计算机科学
随机矩阵
马尔可夫链
隐马尔可夫模型
理论(学习稳定性)
协议(科学)
马尔可夫过程
事件(粒子物理)
离散时间和连续时间
模式(计算机接口)
传输(电信)
基础(线性代数)
共识
李雅普诺夫函数
变阶马尔可夫模型
马尔可夫模型
多智能体系统
数学
人工智能
机器学习
医学
电信
统计
物理
替代医学
几何学
病理
量子力学
非线性系统
操作系统
作者
Ping Ding,Ziwei Li,Feng Li,Jing Wang,Hao Shen
标识
DOI:10.1177/01423312231152655
摘要
This paper addresses the consensus problem of Markov jump multi-agent systems under dynamic event-triggered communication. In order to utilize the limited network resources reasonably and improve the efficiency of data transmission, a dynamic event-triggered method is adopted. Considering the challenge of obtaining system mode information, a hidden Markov model is introduced. On this basis, because of the limitation of mode information acquisition, the case with partially unknown probabilities both exist in the transition probability matrix and the observation probability matrix is discussed, which makes the conclusion realistic. Moreover, a sampled-data consensus protocol is proposed, and based on the Lyapunov stability theory, several sufficient conditions are derived to ensure the consensus of the system under specified [Formula: see text] performance. Finally, a numerical example is given to demonstrate the effectiveness of the proposed protocol.
科研通智能强力驱动
Strongly Powered by AbleSci AI