欧米茄
数学
表征(材料科学)
极大算子
组合数学
操作员(生物学)
纯数学
数学分析
物理
量子力学
转录因子
基因
光学
抑制因子
化学
生物化学
有界函数
作者
Canay Aykol,Javanshir J. Hasanov,Z. V. Safarov
摘要
In this paper we give a characterization of two-weighted inequalities for maximal, singular operators and their commutators in generalized weighted Morrey spaces $\mathcal{M}^{p,\varphi}_{\omega}(\mathbb{R}^n)$. We prove the boundedness of maximal operator $M$ and maximal commutators $[M,b]$ from the spaces $\mathcal{M}^{p,\varphi_1}_{\omega_1^\delta}(\mathbb{R}^n)$ to the spaces $\mathcal{M}^{p,\varphi_2}_{\omega_2^\delta}(\mathbb{R}^n)$, where $1< p<\infty$, $0<\delta<1$ and $(\omega_1,\omega_2)\in \widetilde{A}_{p}(\mathbb{R}^n)$. We also prove the boundedness of the Calderón--Zygmund singular operators $T$ and their commutators $[b,T]$ from $\mathcal{M}^{p,\varphi_1}_{\omega_1^\delta}(\mathbb{R}^n)$ to $\mathcal{M}^{p,\varphi_2}_{\omega_2^\delta}(\mathbb{R}^n)$. Finally we give generalized weighted Morrey a priori estimates as applications of our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI