已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Divide and conquer: A granular concept-cognitive computing system for dynamic classification decision making

计算机科学 动态决策 机器学习 人工智能 追踪 分而治之算法 过程(计算) 决策工程 决策支持系统 数据挖掘 粒度计算 商业决策图 粗集 算法 操作系统
作者
Yunlong Mi,Zongrun Wang,Hui Liu,Yi Qu,Guoqing Yu,Yong Shi
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:308 (1): 255-273 被引量:6
标识
DOI:10.1016/j.ejor.2022.12.018
摘要

Dynamic classification decision making is a crucial issue in management decision making and data mining, which is widely applied in different areas such as human-machine collaborative decision making, network intrusion detection, and traffic data stream mining. However, the existing strategies of static classification decision making are always unable to achieve desired outcomes in ill-structured domains, as the standard machine learning approaches mainly focus on static learning, which is not suitable to mine evolving dynamic data to support decision making. In addition, the main factors regarding incorrect classification predictions are also important for knowledge management and decision making, which is often ignored in many standard learning systems. Therefore, inspired by the idea of divide and conquer, we in this article propose a novel dynamic concept learning framework, namely granular concept-cognitive computing system (gC3S), for dynamic classification decision making by transforming instances into concepts. More specifically, to better characterize the process of dynamic classification decision making, we give the objective function of gC3S via mathematical programming theory. For management decision making, gC3S emphasizes tracing the corresponding approximate concepts via the incorrect classification predictions. Finally, we also apply gC3S to traffic data stream mining, and the experimental results on the different real-world situations further demonstrate that our approach is very effective for dynamic classification decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
刚刚
耶耶耶耶宝完成签到,获得积分10
4秒前
小蘑菇应助乐观文轩采纳,获得10
5秒前
zhaoxi完成签到 ,获得积分10
9秒前
丘比特应助Marciu33采纳,获得10
14秒前
LL完成签到,获得积分10
14秒前
18秒前
西吴完成签到 ,获得积分10
19秒前
打打应助精明的眼神采纳,获得30
19秒前
宣灵薇完成签到,获得积分10
21秒前
啦啦啦完成签到 ,获得积分10
21秒前
吃颗糖吧完成签到,获得积分20
22秒前
LU发布了新的文献求助10
24秒前
28秒前
29秒前
momo123完成签到,获得积分10
30秒前
LU完成签到,获得积分10
31秒前
31秒前
32秒前
1111chen完成签到 ,获得积分10
32秒前
32秒前
ll发布了新的文献求助30
33秒前
Tracy完成签到,获得积分10
34秒前
Jieun发布了新的文献求助30
36秒前
雍雍完成签到 ,获得积分10
36秒前
小黑哥发布了新的文献求助10
36秒前
AEFGGS完成签到,获得积分10
36秒前
科研通AI5应助疯度采纳,获得10
38秒前
爱静静完成签到,获得积分0
38秒前
文欣完成签到 ,获得积分10
42秒前
轻松小张发布了新的文献求助20
44秒前
愛研究完成签到,获得积分10
49秒前
快乐水完成签到,获得积分10
52秒前
陆陶缘完成签到,获得积分10
53秒前
葡紫明完成签到 ,获得积分10
54秒前
不辣的完成签到 ,获得积分10
54秒前
Gypsy完成签到 ,获得积分10
56秒前
abib完成签到,获得积分10
57秒前
juile发布了新的文献求助10
57秒前
科研通AI2S应助往前冲采纳,获得10
57秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792392
求助须知:如何正确求助?哪些是违规求助? 3336653
关于积分的说明 10281744
捐赠科研通 3053408
什么是DOI,文献DOI怎么找? 1675585
邀请新用户注册赠送积分活动 803557
科研通“疑难数据库(出版商)”最低求助积分说明 761457