Artificial intelligence-driven ASPECTS for the detection of early stroke changes in non-contrast CT: a systematic review and meta-analysis

医学 荟萃分析 可靠性(半导体) 组内相关 梅德林 人工智能 冲程(发动机) 对比度(视觉) 医学物理学 机器学习 病理 计算机科学 心理测量学 机械工程 物理 工程类 临床心理学 功率(物理) 法学 量子力学 政治学
作者
Antonis Adamou,Eleftherios Beltsios,Angelina Bania,A. Gkana,Andreas Kastrup,Achilles Chatziioannou,Maria Politi,Panagiotis Papanagiotou
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:15 (e2): e298-e304 被引量:15
标识
DOI:10.1136/jnis-2022-019447
摘要

Background Recent advances in machine learning have enabled development of the automated Alberta Stroke Program Early CT Score (ASPECTS) prediction algorithms using non-contrast enhanced computed tomography (NCCT) scans. The applicability of automated ASPECTS in daily clinical practice is yet to be established. The objective of this meta-analysis was to directly compare the performance of automated and manual ASPECTS predictions in recognizing early stroke changes on NCCT. Methods The MEDLINE, Scopus, and Cochrane databases were searched. The last database search was performed on March 10, 2022. Studies reporting the diagnostic performance and validity of automated ASPECTS software compared with expert readers were included. The outcomes were the interobserver reliability of outputs between ASPECTS versus expert readings, experts versus reference standard, and ASPECTS versus reference standard by means of pooled Fisher’s Z transformation of the interclass correlation coefficients (ICCs). Results Eleven studies were included in the meta-analysis, involving 1976 patients. The meta-analyses showed good interobserver reliability between experts (ICC 0.72 (95% CI 0.63 to 0.79); p<0.001), moderate reliability in the correlation between automated and expert readings (ICC 0.54 (95% CI 0.40 to 0.67); p<0.001), good reliability between the total expert readings and the reference standard (ICC 0.62 (95% CI 0.52 to 0.71); p<0.001), and good reliability between the automated predictions and the reference standard (ICC 0.72 (95% CI 0.61 to 0.80); p<0.001). Conclusions Artificial intelligence-driven ASPECTS software has comparable or better performance than physicians in terms of recognizing early stroke changes on NCCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平常的毛豆应助xr采纳,获得10
1秒前
1秒前
感动城发布了新的文献求助10
1秒前
科研通AI2S应助绾宸采纳,获得30
2秒前
2秒前
2秒前
小费发布了新的文献求助20
2秒前
ccc完成签到,获得积分10
3秒前
迷人尔蓝发布了新的文献求助10
3秒前
牛牛123完成签到 ,获得积分10
3秒前
4秒前
ritalin发布了新的文献求助10
4秒前
leo发布了新的文献求助10
4秒前
苏横发布了新的文献求助10
5秒前
5秒前
boom完成签到 ,获得积分10
5秒前
悦耳的沛文完成签到,获得积分20
5秒前
烟花应助inb采纳,获得10
6秒前
6秒前
7秒前
7秒前
dd发布了新的文献求助10
7秒前
8秒前
一一发布了新的文献求助10
8秒前
acc发布了新的文献求助10
8秒前
脑洞疼应助Kasom采纳,获得10
9秒前
kay完成签到,获得积分10
9秒前
1111111完成签到,获得积分10
9秒前
水星发布了新的文献求助10
9秒前
星辰大海应助Paris采纳,获得10
10秒前
大模型应助rachel03采纳,获得10
10秒前
SYLH应助我是科研小能手采纳,获得10
11秒前
SYLH应助我是科研小能手采纳,获得10
11秒前
11秒前
年少有你完成签到,获得积分10
11秒前
12秒前
12秒前
传奇3应助浪子采纳,获得10
13秒前
kylucky完成签到 ,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786342
求助须知:如何正确求助?哪些是违规求助? 3332114
关于积分的说明 10253906
捐赠科研通 3047419
什么是DOI,文献DOI怎么找? 1672535
邀请新用户注册赠送积分活动 801354
科研通“疑难数据库(出版商)”最低求助积分说明 760143