已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting Atrial Fibrillation in Real Time Based on PPG via Two CNNs for Quality Assessment and Detection

卷积神经网络 计算机科学 联营 人工智能 光容积图 可穿戴计算机 模式识别(心理学) 深度学习 心房颤动 计算机视觉 滤波器(信号处理) 嵌入式系统 医学 心脏病学
作者
Duc Huy Nguyen,Paul C.-P. Chao,Chih-Chieh Chung,Ray‐Hua Horng,Bhaskar Choubey
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (24): 24102-24111 被引量:17
标识
DOI:10.1109/jsen.2022.3217037
摘要

Real-time detection of atrial fibrillation (AFib) is made possible by the quality assessment via a 1-D convolutional neural network (1D-CNN) in a processor of a photoplethysmography (PPG) sensor patch and a 2-D convolutional neural network (2D-CNN) for AFib detection in cloud. The 1D-CNN is able to filter out the unqualified PPG that is contaminated by motion artifacts and/or ambient light interference. The remaining qualified PPG is then inputted to another built 2D-CNN for detecting AFib. This 1D-CNN consists of four layers of convolutions and max pooling, one long short-term memory (LSTM), and an output dense layer. The 2D-CNN is pretrained based on the electrocardiography (ECG) data from multiparameter intelligent monitoring in intensive care (MIMIC) III database, for which the RR-intervals (RRIs) of ECG data are first extracted in Poincaré images and then regarded as input features to the model for training. This 2D-CNN has also four layers of convolutions and max pooling and four output dense layers. The pretrained model is next fine-tuned based on peak-to-peak intervals (PPIs) of PPG measured from wearable devices as input features for detecting AFib effectively. The quality-assessment 1D-CNN model is implemented in the wearable device to transmit only qualified data to the 2D-CNN model in cloud for AFib detection, achieving power efficiency. Both models are trained by the Adam optimizer. To validate the models, the PPIs of PPG were collected to evaluate the performance of the established models in real time. Experimental results show that the fine-tuned 2D-CNN for AFib detection achieves the accuracy, sensitivity, and specificity were 98.08%, 96.82%, and 98.86%, respectively, the most favorable as opposed to other reported works based on PPG. The models are able to not only assist clinicians in AFib detection but also provide a mechanism to detect AFib via wearable devices in real time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taku完成签到 ,获得积分10
2秒前
7秒前
ninomae发布了新的文献求助30
11秒前
粗犷的灵松完成签到,获得积分10
14秒前
Dean应助XHR33采纳,获得10
15秒前
iNk应助ukpkmkk采纳,获得20
16秒前
18秒前
小蓝发布了新的文献求助10
23秒前
kysl完成签到 ,获得积分10
24秒前
XX完成签到,获得积分10
26秒前
田様应助ninomae采纳,获得10
27秒前
29秒前
科研通AI6应助沈随便采纳,获得10
29秒前
JAJ完成签到 ,获得积分10
30秒前
善良的沛山完成签到,获得积分10
32秒前
小蓝完成签到,获得积分10
32秒前
科研通AI6应助www采纳,获得10
37秒前
37秒前
神内小大夫完成签到,获得积分10
38秒前
魈玖完成签到,获得积分10
41秒前
42秒前
368DFS发布了新的文献求助10
43秒前
45秒前
二狗完成签到 ,获得积分10
46秒前
彭于晏应助368DFS采纳,获得10
48秒前
科研fw完成签到 ,获得积分10
50秒前
51秒前
57秒前
58秒前
wei_ahpu完成签到,获得积分10
58秒前
林林完成签到 ,获得积分10
1分钟前
万能图书馆应助小耿采纳,获得10
1分钟前
1分钟前
简单山水发布了新的文献求助10
1分钟前
缓慢的闭月关注了科研通微信公众号
1分钟前
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4813198
求助须知:如何正确求助?哪些是违规求助? 4125446
关于积分的说明 12765591
捐赠科研通 3862710
什么是DOI,文献DOI怎么找? 2126067
邀请新用户注册赠送积分活动 1147564
关于科研通互助平台的介绍 1041495