Boosting target-level infrared and visible image fusion with regional information coordination

Boosting(机器学习) 计算机科学 计算机视觉 图像融合 人工智能 软件可移植性 图像(数学) 融合 特征(语言学) 特征提取 模式识别(心理学) 语言学 哲学 程序设计语言
作者
Mina Han,Kailong Yu,Junhui Qiu,Hao Li,Dan Wu,Yujing Rao,Yang Yang,Lin Xing,Haicheng Bai,Chengjiang Zhou
出处
期刊:Information Fusion [Elsevier BV]
卷期号:92: 268-288 被引量:23
标识
DOI:10.1016/j.inffus.2022.12.005
摘要

The target-level infrared and visible image fusion aims to prominently retain the feature of target areas in the entire scene of fusion results. Nonetheless, most of existing fusion methods tend to evaluate the global information and ignore the retention of specific target information during feature extraction. A few existing target-level fusion methods also have the problem of missing target or scene information under special conditions. In order to address the challenges of image fusion and make further deployment planning in high-level image vision tasks, we propose a target-level infrared and visible image fusion method. In our method, a scene texture attention module is designed to enhance the complementary description of global scene information, and a target extraction module with the target-level loss function is designed to prominently retain the feature of target areas. Furthermore, target information and scene information are equilibrated by the coordination of target-scene information loss function. A large number of comparison experiments with the state-of-the-art methods demonstrate that our fusion method has competitive advantages in highlighting target features and describing global scene. More importantly, in downstream target detection and depth estimation tasks, the excellent performance in accuracy and speed considerably enhances the portability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助庾稀采纳,获得10
刚刚
脑洞疼应助Layli采纳,获得10
刚刚
4秒前
huahua完成签到 ,获得积分10
5秒前
5秒前
顾矜应助WHHEY采纳,获得10
7秒前
WHHEY完成签到,获得积分20
13秒前
大模型应助MXX采纳,获得10
13秒前
Hopper完成签到,获得积分10
14秒前
15秒前
从容傲柏完成签到,获得积分10
15秒前
shiwen完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
椰水冰凉完成签到,获得积分10
18秒前
gnil发布了新的文献求助10
18秒前
XQQDD完成签到,获得积分10
19秒前
wei发布了新的文献求助10
20秒前
852应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
scm应助科研通管家采纳,获得30
20秒前
科研通AI5应助科研通管家采纳,获得80
20秒前
随遇而安应助科研通管家采纳,获得10
20秒前
随遇而安应助科研通管家采纳,获得10
20秒前
孙燕应助科研通管家采纳,获得10
20秒前
庾稀发布了新的文献求助10
21秒前
li关注了科研通微信公众号
23秒前
kk完成签到,获得积分10
24秒前
25秒前
zhouleiwang完成签到,获得积分10
29秒前
大个应助淑欢采纳,获得10
30秒前
mmmmmmgm完成签到 ,获得积分10
30秒前
MXX发布了新的文献求助10
31秒前
34秒前
早起大王完成签到,获得积分10
36秒前
脑洞疼应助liugm采纳,获得10
36秒前
拉赫马尼洛夫完成签到,获得积分20
36秒前
philip发布了新的文献求助30
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846044
求助须知:如何正确求助?哪些是违规求助? 3388436
关于积分的说明 10553093
捐赠科研通 3108972
什么是DOI,文献DOI怎么找? 1713299
邀请新用户注册赠送积分活动 824679
科研通“疑难数据库(出版商)”最低求助积分说明 774982