亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field

慢性阻塞性肺病 气道 计算机科学 卷积神经网络 医学 人工智能 内科学 外科
作者
Yanan Wu,Ran Du,Jie Feng,Shouliang Qi,Haowen Pang,Shuyue Xia,Wei Qian
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104162-104162 被引量:20
标识
DOI:10.1016/j.bspc.2022.104162
摘要

Chronic obstructive pulmonary disease (COPD) is a complex and irreversible respiratory disease with potential morphological abnormalities of the airway and lung fields. To date, whether and how these abnormalities can be used to identify COPD is unknown. This study developed a deep convolutional neural network (CNN) integrating the airway tree and lung field morphologies to identify COPD. We represent 3D airway and lung fields through multi-view 2D snapshots and their integration via deep CNN, to estimate the possibility of COPD. We constructed two datasets named Dataset 1 including 380 participants (190 COPD and 190 healthy controls) for training and validation and Dataset 2 including 201 participants (101 COPD and 100 healthy controls) for testing. First, the 3D airway tree and lung field are automatically extracted from computed tomography (CT) images, and 2D snapshots in nine views are captured. Second, the proposed ResNet-26 is trained with each view of snapshots as input. Finally, majority voting of nine models is performed to identify COPD. The accuracy (ACC) of the single-view ResNet-26 model (ventral, dorsal, and isometric view of airway; front, rear, left, right, top, and bottom view of lung field) is 0.900, 0.873, 0.889, 0.868, 0.824, 0.876, 0.861, 0.839, and 0.884, respectively. For the multi-view ResNet-26 model of airway tree and lung field, the ACC is 0.913 and 0.895, respectively. For the model integrating all nine views, the ACC eventually reaches as high as 0.947. The deep CNN model identifies COPD through integrating morphology of the airway tree and lung field extracted from CT images. A different view of 2D snapshots represents various characteristics of the 3D airway tree and lung field. The integration of multiple views can improve the performance of COPD prediction. The CNN model provides a potential method of identifying COPD via CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cadcae完成签到,获得积分20
16秒前
华仔应助Xenogenesis采纳,获得10
16秒前
23秒前
normankasimodo完成签到 ,获得积分10
27秒前
科研兵发布了新的文献求助10
1分钟前
Lucas应助等待的友菱采纳,获得10
1分钟前
常有李完成签到,获得积分10
1分钟前
领导范儿应助科研兵采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
科研兵发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
Sandy应助科研通管家采纳,获得40
3分钟前
3分钟前
3分钟前
邹醉蓝完成签到,获得积分0
3分钟前
孜然味的拜拜肉完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
领导范儿应助萱萱采纳,获得10
4分钟前
4分钟前
宇老师发布了新的文献求助10
5分钟前
5分钟前
5分钟前
萱萱发布了新的文献求助10
5分钟前
5分钟前
5分钟前
寒冷毛衣发布了新的文献求助10
5分钟前
5分钟前
CodeCraft应助萱萱采纳,获得10
5分钟前
5分钟前
英姑应助寒冷毛衣采纳,获得10
5分钟前
沉默不言发布了新的文献求助10
5分钟前
科研兵完成签到 ,获得积分10
5分钟前
科研通AI5应助萱萱采纳,获得100
6分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963228
求助须知:如何正确求助?哪些是违规求助? 3509100
关于积分的说明 11145144
捐赠科研通 3242230
什么是DOI,文献DOI怎么找? 1791810
邀请新用户注册赠送积分活动 873168
科研通“疑难数据库(出版商)”最低求助积分说明 803643