Using social media photos and computer vision to assess cultural ecosystem services and landscape features in urban parks

生态系统服务 地理 社会化媒体 城市景观 环境资源管理 遥感 计算机科学 生态系统 环境规划 生态学 万维网 环境科学 生物
作者
Songyao Huai,Chen Fen,Song Liu,Frank Canters,Tim Van de Voorde
出处
期刊:Ecosystem services [Elsevier BV]
卷期号:57: 101475-101475 被引量:42
标识
DOI:10.1016/j.ecoser.2022.101475
摘要

Urban parks are important public places that provide an opportunity for city dwellers to interact with nature. In recent years, social media data have become a promising data source for the assessment of cultural ecosystem services (CES) and landscape features in urban parks. However, it is a challenging task to identify and classify the CES and landscape features from social media photos by manual content analysis. In addition, relatively few studies focused on the differences in landscape preferences between tourists and locals in urban parks. In this study, we used geotagged social media photos from Flickr and computer vision methods (scene recognition, image clustering and image labeling) based on the convolutional neural networks (CNN) and the Google Cloud Vision platform to assess the spatial preferences and landscape preferences (cultural ecosystem services and landscape features) of tourists and locals in the urban parks of Brussels. The spatial analysis results showed that the tourists’ photos were spatially concentrated on well-known parks located in the city center while the locals’ photos were rather spatially dispersed across all parks of the city. We identified 10 main landscape themes (corresponding to 4 CES categories and 10 landscape feature categories) from 20 image clusters by automated image analysis on social media photos. We also noticed that tourists paid more attention to the place identity featured by symbolic sculptures and buildings, while locals showed more interest in local species of plants, flowers, insects, birds, and animals. This research contributes to social media-based user preferences analysis and CES assessment, which could provide insights for urban park planning and tourism management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花粉过敏完成签到,获得积分20
1秒前
王Hope完成签到,获得积分10
1秒前
1秒前
赘婿应助mzc采纳,获得10
1秒前
2秒前
4秒前
4秒前
6秒前
嗯嗯完成签到 ,获得积分20
6秒前
俏皮芹完成签到,获得积分10
6秒前
五條小羊完成签到,获得积分10
7秒前
7秒前
向语堂发布了新的文献求助10
8秒前
Fairy完成签到,获得积分10
9秒前
jam完成签到,获得积分10
10秒前
nn关闭了nn文献求助
10秒前
火星上的蜡烛完成签到,获得积分10
10秒前
禹宙中欣发布了新的文献求助10
10秒前
cdercder应助Mumu采纳,获得30
10秒前
guanyu108发布了新的文献求助10
11秒前
11秒前
birdy完成签到,获得积分10
11秒前
11秒前
云fly发布了新的文献求助10
12秒前
Nikki023完成签到 ,获得积分10
12秒前
12秒前
肝帝完成签到,获得积分10
13秒前
zsh完成签到,获得积分10
13秒前
Fox完成签到,获得积分0
13秒前
万能图书馆应助云上人采纳,获得10
14秒前
DW发布了新的文献求助10
14秒前
14秒前
Gilana完成签到,获得积分10
14秒前
14秒前
青山完成签到,获得积分10
14秒前
香蕉觅云应助jerry采纳,获得10
15秒前
哭泣乌完成签到,获得积分10
15秒前
Hello应助鲤黎黎采纳,获得10
15秒前
水冰月发布了新的文献求助10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816267
求助须知:如何正确求助?哪些是违规求助? 3359734
关于积分的说明 10404496
捐赠科研通 3077608
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767801