亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint shear strength prediction of beam-column connections using machine learning via experimental results

抗剪强度(土壤) 参数统计 多元自适应回归样条 支持向量机 接头(建筑物) 回归 剪切(地质) 回归分析 人工神经网络 多元统计 核(代数) 数学 结构工程 计算机科学 工程类 机器学习 统计 非参数回归 材料科学 地质学 土壤科学 复合材料 组合数学 土壤水分
作者
Hanaa Salem,Khaled Abu el‐hassan,Ehab M. Almetwally,Mahmoud A. El-Mandouh
出处
期刊:Case Studies in Construction Materials [Elsevier]
卷期号:17: e01463-e01463 被引量:31
标识
DOI:10.1016/j.cscm.2022.e01463
摘要

Machine learning (ML) had already advanced rapidly in recent years, promising to completely change and enhance the function of data science in a spectrum of areas. This paper proposed a framework for predicting the shear strength of reinforced concrete beam-column connections subjected to cyclic loading. Six classical prediction models (Ordinary least Squares (OLS), Support Vector Machines (SVM), K-Nearest neighbour regression (KNN), Multivariate Adaptive Regression Splines (MARS), Artificial Neural Networks (ANN), and kernel regression with mixed data types (Kernel regression)) were proposed, and a total of 98 dataset results were collected and used to train and evaluate the suggested framework models. The most important factors influencing the joint shear strength were chosen based on the previous experimental results to create a parametric equation to forecast the joint shear strength. Also, the experimental joint shear strength was compared with that predicted using the proposed framework model and the parametric equation. The results show that the Kernel regression predicted the shear strength of beam-column connections subjected to cyclic loading with the highest accuracy. Moreover, the squared R-value is 0.9752 which reflects the high efficiency of the Kernel model between other models. The results also reveal that the joint shear strength predicted using the Kernel regression is closer to the experimental values than the joint shear strength predicted using the parametric equation. As a result, the proposed model may be a useful tool for researchers and reinforced concrete engineers in accurately estimating the joint shear strength of beam-column connections (i) within the ranges of values used in this study for the input data, and (ii) with less time and cost than constructing other numerical schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
7秒前
酷波er应助ceeray23采纳,获得20
9秒前
brwen完成签到,获得积分10
10秒前
医路潜行发布了新的文献求助10
12秒前
zy完成签到 ,获得积分10
16秒前
18秒前
fu完成签到,获得积分10
21秒前
OnlyHarbour发布了新的文献求助10
23秒前
田様应助科研通管家采纳,获得10
32秒前
情怀应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
shhoing应助科研通管家采纳,获得10
32秒前
科目三应助Li采纳,获得10
33秒前
芝士奶盖有点咸完成签到 ,获得积分10
34秒前
清爽的胡萝卜完成签到 ,获得积分10
34秒前
天天天才完成签到,获得积分10
35秒前
Honor完成签到 ,获得积分10
39秒前
Aaaapear完成签到,获得积分10
41秒前
研友_VZG7GZ应助dbaxia采纳,获得10
43秒前
44秒前
xushangyuan发布了新的文献求助10
44秒前
Aaron完成签到 ,获得积分10
46秒前
Orange应助没烦恼采纳,获得10
47秒前
48秒前
arizaki7应助Babe1934采纳,获得10
48秒前
等待若山发布了新的文献求助10
55秒前
55秒前
1分钟前
1分钟前
Li发布了新的文献求助10
1分钟前
整齐的千万完成签到 ,获得积分10
1分钟前
美女发布了新的文献求助10
1分钟前
Bellis完成签到 ,获得积分10
1分钟前
1分钟前
hello_world完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346