Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands

亲缘关系 结合亲和力 计算生物学 核糖核酸 DNA 生物 遗传学 纳米技术 材料科学 生物化学 基因 受体
作者
Ara M. Abramyan,Anna Bochicchio,Chuanjie Wu,Wolfgang Damm,David R. Langley,Devleena Shivakumar,Dmitry Lupyan,Lingle Wang,Edward Harder,E.O. Oloo
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01708
摘要

Accurate prediction of the affinity of ligand binding to nucleic acids represents a formidable challenge for current computational approaches. This limitation has hindered the use of computational methods to develop small-molecule drugs that modulate the activity of nucleic acids, including those associated with anticancer, antiviral, and antibacterial effects. In recent years, significant scientific and technological advances as well as easier access to compute resources have contributed to free-energy perturbation (FEP) becoming one of the most consistently reliable approaches for predicting relative binding affinities of ligands to proteins. Nevertheless, FEP's applicability to nucleic-acid targeting ligands has remained largely undetermined. In this work, we present a systematic assessment of the accuracy of FEP, as implemented in FEP+ software and facilitated by the OPLS4 force field, in predicting relative binding free energies of congeneric series of ligands interacting with a variety of DNA/RNA systems. The study encompassed more than 100 ligands exhibiting diverse binding modes, some partially exposed and others deeply buried. Using a consistent simulation protocol, more than half of the predictions are within 1 kcal/mol of the experimentally measured values. Across the data set, we report a combined average pairwise root-mean-square-error of <1.4 kcal/mol, which falls within one log unit of the experimentally measured dissociation constants. These results suggest that FEP+ has sufficient accuracy to guide the optimization of lead series in drug discovery programs targeting RNA and DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
科研通AI2S应助小榆采纳,获得10
2秒前
reverse完成签到,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
聪慧芷巧应助科研通管家采纳,获得10
3秒前
3秒前
乐乐应助小孙采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
vvA11应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
123455完成签到,获得积分20
4秒前
aaa发布了新的文献求助10
4秒前
能干苑睐发布了新的文献求助10
4秒前
JamesPei应助白露为霜采纳,获得10
5秒前
棉花糖发布了新的文献求助20
5秒前
7秒前
7秒前
谷晋羽发布了新的文献求助10
7秒前
丘比特应助tubby采纳,获得10
8秒前
善学以致用应助aaa采纳,获得10
9秒前
黄可以完成签到,获得积分10
10秒前
英姑应助小疯采纳,获得10
11秒前
在水一方应助陈chq采纳,获得10
12秒前
liu发布了新的文献求助10
12秒前
wanci应助huyuan采纳,获得10
15秒前
15秒前
16秒前
16秒前
FashionBoy应助陈cj采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209315
求助须知:如何正确求助?哪些是违规求助? 3743358
关于积分的说明 11783113
捐赠科研通 3413214
什么是DOI,文献DOI怎么找? 1872959
邀请新用户注册赠送积分活动 927564
科研通“疑难数据库(出版商)”最低求助积分说明 837127