An enhanced guided stochastic search with repair deceleration mechanism for very high-dimensional optimization problems of steel double-layer grids

机制(生物学) 工程设计过程 数学优化 图层(电子) 双层(生物学) 计算机科学 材料科学 结构工程 机械工程 工程类 数学 复合材料 物理 量子力学
作者
Saeid Kazemzadeh Azad,Saman Aminbakhsh,Amir H. Gandomi
出处
期刊:Structural and Multidisciplinary Optimization [Springer Nature]
卷期号:67 (12) 被引量:1
标识
DOI:10.1007/s00158-024-03898-5
摘要

Abstract Finding reasonably good solutions using a fewer number of objective function evaluations has long been recognized as a good attribute of an optimization algorithm. This becomes more important, especially when dealing with very high-dimensional optimization problems, since contemporary algorithms often need a high number of iterations to converge. Furthermore, the excessive computational effort required to handle the large number of design variables involved in the optimization of large-scale steel double-layer grids with complex configurations is perceived as the main challenge for contemporary structural optimization techniques. This paper aims to enhance the convergence properties of the standard guided stochastic search (GSS) algorithm to handle computationally expensive and very high-dimensional optimization problems of steel double-layer grids. To this end, a repair deceleration mechanism (RDM) is proposed, and its efficiency is evaluated through challenging test examples of steel double-layer grids. First, parameter tuning based on rigorous analyses of two preliminary test instances is performed. Next, the usefulness of the proposed RDM is further investigated through two very high-dimensional instances of steel double-layer grids, namely a 21,212-member free-form double-layer grid, and a 25,514-member double-layer multi-dome, with 21,212 and 25,514 design variables, respectively. The obtained numerical results indicate that the proposed RDM can significantly enhance the convergence rate of the GSS algorithm, rendering it an efficient tool to handle very high-dimensional sizing optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助50
刚刚
刚刚
儒雅致远发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
临床医学生完成签到,获得积分20
2秒前
2秒前
王w驳回了今后应助
3秒前
3秒前
科研通AI6应助懦弱的丹秋采纳,获得10
3秒前
七七发布了新的文献求助10
4秒前
4秒前
朱光辉发布了新的文献求助10
4秒前
sssss发布了新的文献求助10
4秒前
4秒前
鲍建芳发布了新的文献求助10
5秒前
DXX完成签到,获得积分10
5秒前
RATHER发布了新的文献求助10
5秒前
bkagyin应助卡拉尔德采纳,获得10
5秒前
5秒前
5秒前
hnl发布了新的文献求助10
6秒前
胡胡发布了新的文献求助10
6秒前
在水一方应助赵小坤堃采纳,获得10
6秒前
天真凡灵发布了新的文献求助10
7秒前
7秒前
7秒前
慕青应助ccc采纳,获得10
7秒前
fafafa发布了新的文献求助10
7秒前
香蕉觅云应助轩轩xuan采纳,获得10
7秒前
王优秀发布了新的文献求助10
8秒前
科研通AI6应助123采纳,获得10
8秒前
liu发布了新的文献求助10
8秒前
影唯完成签到,获得积分10
8秒前
8秒前
wanci应助欢呼的过客采纳,获得10
8秒前
qq完成签到 ,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649224
求助须知:如何正确求助?哪些是违规求助? 4777640
关于积分的说明 15047109
捐赠科研通 4808179
什么是DOI,文献DOI怎么找? 2571280
邀请新用户注册赠送积分活动 1527831
关于科研通互助平台的介绍 1486710