Rural Tourist Attractions Recommendation Model Based on Multi-Feature Fusion Graph Neural Networks

计算机科学 旅游 人工神经网络 特征(语言学) 人工智能 图形 乡村旅游 机器学习 数据挖掘 理论计算机科学 语言学 哲学 政治学 旅游地理学 法学
作者
Xiangrong Zhang,Xueying Wang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500275
摘要

With the rapid growth of the rural tourism industry, traditional tourism recommendation technologies can no longer meet the necessary requirements. To address the issue of rural tourist attraction recommendations, a rural tourist attraction recommendation model is constructed based on a multi-feature fusion graph neural network. First, construct a feature map based on the relationship between tourists’ preferences and tourist attractions, and incorporate the attention mechanism to enhance the model’s learning capabilities. Second, utilize a two-part graph model to extract positive and negative preference features of tourists, and a conversation graph model to extract tourists’ transfer preference features. Finally, various features are utilized to generate suggested content by computing scores for tourists’ travel preferences. To address the problem of recommending tourist groups, suitable features for random group matching are collected and the cosine function is employed to identify users with similar random group features. Finally, the multi-features are merged, and the tourists’ interest preferences are scored to arrive at content recommendations. In the experiment on individualized attraction recommendations, data from the Chengdu area were used to test the proposed model. The accuracy of the model’s recommendations was 0.822 for five recommendations which outperformed the other models. In the experiment for group-based attraction recommendations, this experiment tested the Chengdu dataset. The proposed model achieved the highest accuracy of 0.972 when the group size was 70, outperforming the other two models. Additionally, with regards to different numbers of recommendations, the proposed model’s accuracy was 0.5241, which was the best performance among the three models when the number of recommendations was set to five. The proposed recommendation model performs optimally in suggesting tourist attractions and meets the needs of rural tourism. The research content provides crucial technical references for tourist traveling and rural tourism development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wsy完成签到,获得积分10
2秒前
3秒前
宁幼萱完成签到,获得积分10
4秒前
J_C_Van完成签到,获得积分10
4秒前
Ava应助如风随水采纳,获得10
4秒前
5秒前
啦啦啦发布了新的文献求助10
6秒前
7秒前
zn完成签到,获得积分20
7秒前
尛森发布了新的文献求助10
8秒前
zz完成签到,获得积分10
10秒前
10秒前
华仔应助舒适的流沙采纳,获得30
11秒前
称心的海发布了新的文献求助10
12秒前
15秒前
Ale完成签到,获得积分10
17秒前
Orange应助小单王采纳,获得10
19秒前
20秒前
桃花落发布了新的文献求助10
20秒前
bhkwxdxy完成签到,获得积分10
20秒前
魔幻的安彤完成签到,获得积分20
23秒前
24秒前
徐嘿嘿完成签到,获得积分10
25秒前
小二郎应助尛森采纳,获得10
26秒前
28秒前
29秒前
安安发布了新的文献求助10
29秒前
32秒前
徐哈哈完成签到,获得积分10
32秒前
JamesPei应助乐观的颦采纳,获得10
33秒前
33秒前
34秒前
FF12781发布了新的文献求助10
35秒前
武雨寒发布了新的文献求助10
35秒前
希望天下0贩的0应助Jun采纳,获得10
37秒前
37秒前
龅牙苏发布了新的文献求助10
38秒前
撑撑的烤红薯完成签到 ,获得积分10
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560