Effect of Shell Thickness on the Oxygen Evolution Activity of Core@shell Fe3O4@CoFe2O4 Nanoparticles

壳体(结构) 纳米颗粒 材料科学 氧气 芯(光纤) 结晶学 纳米技术 化学工程 化学 复合材料 有机化学 工程类
作者
Iryna Makarchuk,Benjamin Rotonnelli,Lisa Royer,Simon Hettler,Jean‐Jacques Gallet,Fabrice Bournel,Julie Guehl,Amandine Brige,Andrea Zitolo,Gwénaëlle Kéranguéven,Antoine Bonnefont,Raúl Arenal,Elena R. Savinova,Tristan Asset,Benoît P. Pichon
出处
期刊:Chemistry of Materials [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.chemmater.4c01784
摘要

Hydrogen production via water splitting requires efficient electrocatalysts to reduce the overpotential of the anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER). In this study, we investigated the influence of apparent shell thickness on the electrocatalytic activity of Fe3O4@CoFe2O4 core@shell nanoparticles, an efficient noble metal-free OER catalyst in alkaline media. Three different types of core@shell nanoparticles were synthesized by the seed-mediated crystal growth of cobalt ferrite on pristine magnetite nanoparticles. The synthesis conditions were adapted to modulate the shell structure. Importantly, all proposed core@shell structures showed excellent stability during electrochemical testing, which is important for eventual industrial applications. We showed that the electrocatalytic performance of Fe3O4@CoFe2O4 core@shell nanoparticles was significantly influenced by the shell structure. The cooperative redox mechanism proposed to be the origin of the activity enhancement in core@shell nanoparticles was investigated by using in situ soft X-ray absorption spectroscopy (XAS). XAS revealed that cooperative redox interactions occurred between Co(II) and Fe(II) residing in close proximity at the core/shell interface, hence requiring a thin and continuous CoFe2O4 shell. Overall, this study provides insights into the design of efficient core@shell nanocatalysts for the OER, offering a path toward improving the performance of earth-abundant transition metal-oxide (TMO) catalysts for sustainable H2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助byp采纳,获得10
刚刚
liagse完成签到,获得积分10
1秒前
miao完成签到,获得积分10
1秒前
帅气灯泡完成签到,获得积分10
1秒前
peekaboo完成签到,获得积分20
2秒前
2秒前
爱听歌火龙果完成签到,获得积分20
3秒前
DenM7发布了新的文献求助10
3秒前
脑洞疼应助xkwon采纳,获得10
3秒前
吕文晴发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
6秒前
听见完成签到,获得积分10
7秒前
DenM7完成签到,获得积分10
8秒前
张琦发布了新的文献求助10
9秒前
小木完成签到,获得积分10
9秒前
9秒前
diaiyi完成签到,获得积分10
10秒前
科研通AI5应助魏伯安采纳,获得10
11秒前
Atung完成签到,获得积分10
11秒前
高山我梦发布了新的文献求助10
11秒前
顾矜应助是我呀小夏采纳,获得10
11秒前
whuhustwit发布了新的文献求助10
11秒前
荣耀发布了新的文献求助10
11秒前
徐茂瑜完成签到 ,获得积分10
12秒前
张澳完成签到,获得积分10
13秒前
大模型应助liagse采纳,获得20
13秒前
小木发布了新的文献求助10
14秒前
14秒前
15秒前
李浩发布了新的文献求助10
15秒前
16秒前
Jasper应助angel采纳,获得10
16秒前
银河系系猪完成签到,获得积分20
16秒前
懵懂的仙人掌完成签到,获得积分10
18秒前
yugq完成签到,获得积分10
18秒前
18秒前
不安的chen完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794906
求助须知:如何正确求助?哪些是违规求助? 3339826
关于积分的说明 10297478
捐赠科研通 3056446
什么是DOI,文献DOI怎么找? 1676997
邀请新用户注册赠送积分活动 805070
科研通“疑难数据库(出版商)”最低求助积分说明 762322