Coarse for Fine: Bounding Box Supervised Thyroid Ultrasound Image Segmentation Using Spatial Arrangement and Hierarchical Prediction Consistency

最小边界框 分割 人工智能 计算机科学 图像分割 模式识别(心理学) 一致性(知识库) 计算机视觉 跳跃式监视 图像(数学)
作者
Jianning Chi,Lin Geng,Zelan Li,Wenjun Zhang,Jiahui Chen,Ying Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2025.3535541
摘要

Weakly-supervised learning methods have become increasingly attractive for medical image segmentation, but suffered from a high dependence on quantifying the pixel-wise affinities of low-level features, which are easily corrupted in thyroid ultrasound images, resulting in segmentation over-fitting to weakly annotated regions without precise delineation of target boundaries. We propose a dual-branch weakly-supervised learning framework to optimize the backbone segmentation network by calibrating semantic features into rational spatial distribution under the indirect, coarse guidance of the bounding box mask. Specifically, in the spatial arrangement consistency branch, the maximum activations sampled from the preliminary segmentation prediction and the bounding box mask along the horizontal and vertical dimensions are compared to measure the rationality of the approximate target localization. In the hierarchical prediction consistency branch, the target and background prototypes are encapsulated from the semantic features under the combined guidance of the preliminary segmentation prediction and the bounding box mask. The secondary segmentation prediction induced from the prototypes is compared with the preliminary prediction to quantify the rationality of the elaborated target and background semantic feature perception. Experiments on three thyroid datasets illustrate that our model outperforms existing weakly-supervised methods for thyroid gland and nodule segmentation and is comparable to the performance of fully-supervised methods with reduced annotation time. The proposed method has provided a weakly-supervised segmentation strategy by simultaneously considering the target's location and the rationality of target and background semantic features distribution. It can improve the applicability of deep learning based segmentation in the clinical practice. The source code and relative datasets will be available at https://github.com/LanLanUp/SAHP-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁33发布了新的文献求助80
2秒前
小鬼1004完成签到,获得积分20
2秒前
3秒前
111完成签到,获得积分10
3秒前
3秒前
lzd完成签到,获得积分10
4秒前
hucaicai完成签到,获得积分10
4秒前
7秒前
陆小凤发布了新的文献求助10
8秒前
cookie发布了新的文献求助100
11秒前
转生成书完成签到,获得积分10
11秒前
yy给yy的求助进行了留言
13秒前
13秒前
Owen应助郝岩采纳,获得10
13秒前
Adzuki0812发布了新的文献求助10
14秒前
14秒前
文献求助人完成签到,获得积分10
15秒前
素笺发布了新的文献求助10
20秒前
ding应助Zhoey采纳,获得10
20秒前
小耳朵完成签到,获得积分10
21秒前
不会失忆完成签到,获得积分10
21秒前
www发布了新的文献求助20
23秒前
23秒前
深情安青应助123采纳,获得20
25秒前
华仔应助科研通管家采纳,获得10
26秒前
木木应助科研通管家采纳,获得50
26秒前
木木应助科研通管家采纳,获得30
26秒前
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
26秒前
yar应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
yar应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
27秒前
chengjie应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062952
求助须知:如何正确求助?哪些是违规求助? 3601444
关于积分的说明 11437967
捐赠科研通 3324713
什么是DOI,文献DOI怎么找? 1827766
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997