Enhancing Selectivity of Two‐Dimensional Materials‐Based Gas Sensors

材料科学 灵敏度(控制系统) 计算机科学 纳米技术 系统工程 工艺工程 生化工程 电子工程 工程类
作者
Jiefu Yang,Rui-Jia Sun,Xuan Bao,Juanjuan Liu,J. Ng,Bijun Tang,Zheng Liu
出处
期刊:Advanced Functional Materials [Wiley]
被引量:11
标识
DOI:10.1002/adfm.202420393
摘要

Abstract Two‐dimensional (2D) materials have emerged as promising candidates for gas sensing applications due to their exceptional electrical, structural, and chemical properties, which enable high sensitivity and rapid response to gas molecules. However, despite their potential, 2D material‐based gas sensors face a significant challenge in achieving adequate selectivity, as many sensors respond similarly to multiple gases, leading to cross‐sensitivity and inaccurate detection. This review provides a comprehensive overview of the recent advancements for improving the selectivity of 2D gas sensors. It explores material modification strategies, such as functionalizing the sensing components and tuning adsorption dynamics, to enhance selective gas interactions. Engineering approaches, including field‐effect modulation and sensor array design, are also discussed as effective methods to fine‐tune sensor performance. Additionally, the integration of machine learning (ML) algorithms is highlighted for their potential to differentiate among multiple analytes. Prospects for further improving selectivity through material optimization, sensor calibration, and drift compensation are explored, along with the incorporation of smart sensing systems into the Internet of Things (IoT). This review outlines key objectives and strategies that pave the way for next‐generation gas sensors with enhanced selectivity, reliability, and versatility, poised to impact a wide range of applications from environmental monitoring to industrial safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诚心的箴完成签到,获得积分10
1秒前
ppzz1220完成签到,获得积分10
1秒前
lianqing完成签到,获得积分10
1秒前
吴静完成签到 ,获得积分10
1秒前
DESERVE.完成签到,获得积分10
1秒前
王孝松发布了新的文献求助10
1秒前
Pw完成签到,获得积分10
1秒前
2秒前
ljy完成签到,获得积分10
2秒前
幸福的道之完成签到,获得积分10
2秒前
甜美的瑾瑜完成签到,获得积分10
2秒前
木子青山完成签到,获得积分10
2秒前
3秒前
弥生发布了新的文献求助10
3秒前
lemon完成签到,获得积分10
4秒前
岂识浊醪妙理完成签到,获得积分10
4秒前
合适的天奇完成签到,获得积分10
4秒前
xzzt完成签到 ,获得积分10
6秒前
分歧者咋咋完成签到,获得积分10
6秒前
6秒前
6秒前
其醉完成签到,获得积分10
6秒前
6秒前
6秒前
墨羽完成签到,获得积分10
6秒前
Gxx发布了新的文献求助10
7秒前
7秒前
机智的凡梦完成签到,获得积分10
7秒前
生物小神完成签到,获得积分10
8秒前
小土豆完成签到 ,获得积分10
8秒前
乐正一兰完成签到,获得积分10
8秒前
lkk完成签到,获得积分10
8秒前
小白完成签到 ,获得积分10
9秒前
ccc完成签到,获得积分20
9秒前
能干凝冬完成签到,获得积分10
9秒前
iron完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067327
求助须知:如何正确求助?哪些是违规求助? 4289104
关于积分的说明 13362097
捐赠科研通 4108613
什么是DOI,文献DOI怎么找? 2249798
邀请新用户注册赠送积分活动 1255239
关于科研通互助平台的介绍 1187762