A Novel State Space Model with Dynamic Graphic Neural Network for EEG Event Detection

脑电图 计算机科学 人工神经网络 状态空间 人工智能 国家(计算机科学) 事件相关电位 事件(粒子物理) 模式识别(心理学) 神经科学 心理学 算法 数学 统计 物理 量子力学
作者
LI Xin-ying,Shengjie Yan,Yonglin Wu,Chenyun Dai,Yao Guo
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s012906572550008x
摘要

Electroencephalography (EEG) is a widely used physiological signal to obtain information of brain activity, and its automatic detection holds significant research importance, which saves doctors’ time, improves detection efficiency and accuracy. However, current automatic detection studies face several challenges: large EEG data volumes require substantial time and space for data reading and model training; EEG’s long-term dependencies test the temporal feature extraction capabilities of models; and the dynamic changes in brain activity and the non-Euclidean spatial structure between electrodes complicate the acquisition of spatial information. The proposed method uses range-EEG (rEEG) to extract time-frequency features from EEG to reduce data volume and resource consumption. Additionally, the next-generation state-space model Mamba is utilized as a temporal feature extractor to effectively capture the temporal information in EEG data. To address the limitations of state space models (SSMs) in spatial feature extraction, Mamba is combined with Dynamic Graph Neural Networks, creating an efficient model called DG-Mamba for EEG event detection. Testing on seizure detection and sleep stage classification tasks showed that the proposed method improved training speed by 10 times and reduced memory usage to less than one-seventh of the original data while maintaining superior performance. On the TUSZ dataset, DG-Mamba achieved an AUROC of 0.931 for seizure detection and in the sleep stage classification task, the proposed model surpassed all baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyc完成签到,获得积分10
2秒前
3秒前
烟花应助无辜澜采纳,获得10
4秒前
大模型应助武雨寒采纳,获得10
6秒前
追逐的疯完成签到 ,获得积分10
7秒前
8秒前
鑫渊完成签到,获得积分10
10秒前
一一应助激情的一斩采纳,获得20
10秒前
uu完成签到 ,获得积分20
10秒前
Ava应助激昂的如柏采纳,获得10
11秒前
dou完成签到 ,获得积分10
11秒前
领导范儿应助Colossus采纳,获得10
12秒前
12秒前
Rico_完成签到,获得积分10
13秒前
17秒前
小小菜鸟完成签到 ,获得积分10
17秒前
17秒前
Akim应助吃吃货采纳,获得10
18秒前
望南完成签到,获得积分10
19秒前
无花果应助Rico_采纳,获得10
20秒前
FashionBoy应助小橘采纳,获得10
21秒前
Siyu完成签到 ,获得积分10
22秒前
22秒前
彭于晏应助顺利纸飞机采纳,获得10
22秒前
陈陈发布了新的文献求助10
22秒前
23秒前
24秒前
苹果酸奶完成签到 ,获得积分10
24秒前
叫我少爷完成签到 ,获得积分10
25秒前
27秒前
shufessm完成签到,获得积分0
27秒前
xiaobai完成签到,获得积分10
27秒前
武雨寒发布了新的文献求助10
28秒前
白日梦发布了新的文献求助10
29秒前
31秒前
SciGPT应助小单王采纳,获得10
32秒前
吃吃货发布了新的文献求助10
33秒前
柴子完成签到,获得积分10
33秒前
炫哥IRIS完成签到,获得积分10
33秒前
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800362
求助须知:如何正确求助?哪些是违规求助? 3345637
关于积分的说明 10326218
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680810
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763560