Development of Strong and Tough Silicone Hydrogels Enabled by Polymerization‐Induced Microphase Separation and Multiscaled Electrostatic Interactions and Their Application as Water‐Shrinkable Sleeves

材料科学 自愈水凝胶 硅酮 聚合 复合材料 纳米技术 高分子科学 化学工程 高分子化学 聚合物 工程类
作者
Hao Zhang,Long Chen,Yongchao Xiao,Xiaolei Guo,Songfang Zhao,Ruifang Guan,Teng Long,Xiao Cheng,Chuanjian Zhou
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202507061
摘要

Abstract Silicone hydrogels (SiHys) have attracted significant attention due to their potential applications, including biomedical devices and soft robotics. However, their widespread use is severely constrained by the inadequate mechanical performance and low silicone content. To address this challenge, this work develops a SiHys with high strength, toughness, and silicon content through polymerization‐induced microphase separation and multiscaled electrostatic interactions. A “Salt‐Forming” reaction between hydrophobic amino‐modified polydimethylsiloxane (APSi) and acrylic acid (AA) is leveraged, which converts APSi into a hydrophilic polymer. Upon polymerization induced by ultraviolet light, the polyacrylic acid (PAA) chains will interact with APSi, effectively reducing its hydrophilicity and inducing in situ microphase separation. This microphase separation, in conjunction with a hierarchical network of strong and weak electrostatic interactions between APSi and PAA, significantly enhances the mechanical properties of the hydrogels. By tuning the molecular structure of APSi and feed concentrations delicately, precise control over the hydrogel's aggregation structure is achieved, yielding impressive mechanical properties, including adjustable tensile strength (0.39–16.2 MPa), elongation at break (559.71–1680.86%), Young's modulus (0.16–11.76 MPa), and toughness (3.88–49.59 MJ m − 3 ). Notably, leveraging the water diffusion‐driven shape memory effect, SiHys can function as “Water‐shrinkable sleeves,” enabling the secure gripping of heavy objects underwater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
竹青完成签到 ,获得积分10
1秒前
标致乐双发布了新的文献求助10
1秒前
星辰大海应助兴奋的昊强采纳,获得10
2秒前
研友_VZG7GZ应助LS-GENIUS采纳,获得10
2秒前
2秒前
一颗土豆完成签到,获得积分10
2秒前
2秒前
虞忱完成签到,获得积分10
2秒前
烟花应助weiwei采纳,获得10
3秒前
3秒前
慕航完成签到,获得积分20
3秒前
烟花应助pps采纳,获得10
3秒前
万能图书馆应助up_water采纳,获得10
4秒前
SciGPT应助kk2024采纳,获得20
4秒前
4秒前
饱满服饰发布了新的文献求助10
6秒前
慕航发布了新的文献求助10
6秒前
64658应助慧慧aaaaaa采纳,获得30
6秒前
与光完成签到 ,获得积分10
7秒前
besatified发布了新的文献求助10
7秒前
remix发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助angelinazh采纳,获得10
8秒前
8秒前
8秒前
9秒前
李爱国应助ACoolZc采纳,获得10
9秒前
9秒前
ppp发布了新的文献求助10
10秒前
yule完成签到,获得积分10
10秒前
-17完成签到 ,获得积分10
10秒前
希zi完成签到,获得积分20
10秒前
易漠完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
研友_VZG7GZ应助海风吹采纳,获得10
12秒前
12秒前
kkm发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084648
求助须知:如何正确求助?哪些是违规求助? 4301274
关于积分的说明 13402455
捐赠科研通 4125720
什么是DOI,文献DOI怎么找? 2259524
邀请新用户注册赠送积分活动 1263746
关于科研通互助平台的介绍 1197909