Radiomics-Driven Tumor Prognosis Prediction Across Imaging Modalities: Advances in Sampling, Feature Selection, and Multi-Omics Integration

作者
Mohan Huang,Hkw Law,Shing Yau Tam
出处
期刊:Cancers [MDPI AG]
卷期号:17 (19): 3121-3121 被引量:1
标识
DOI:10.3390/cancers17193121
摘要

Radiomics has shown remarkable potential in predicting cancer prognosis by noninvasive and quantitative analysis of tumors through medical imaging. This review summarizes recent advances in the use of radiomics across various cancer types and imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and interventional radiology. Innovative sampling methods, including deep learning-based segmentation, multiregional analysis, and adaptive region of interest (ROI) methods, have contributed to improved model performance. The review examines various feature selection approaches, including least absolute shrinkage and selection operator (LASSO), minimum redundancy maximum relevance (mRMR), and ensemble methods, highlighting their roles in enhancing model robustness. The integration of radiomics with multi-omics data has further boosted predictive accuracy and enriched biological interpretability. Despite these advancements, challenges remain in terms of reproducibility, workflow standardization, clinical validation and acceptance. Future research should prioritize multicenter collaborations, methodological coordination, and clinical translation to fully unlock the prognostic potential of radiomics in oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
zeal完成签到,获得积分20
刚刚
纯真寻冬完成签到,获得积分10
1秒前
球宝完成签到,获得积分10
1秒前
1秒前
1秒前
淡定的愫完成签到,获得积分10
1秒前
1秒前
2秒前
JOY完成签到,获得积分10
2秒前
2秒前
内向的冰岚完成签到,获得积分10
2秒前
斯文败类应助guojingjing采纳,获得10
2秒前
long发布了新的文献求助10
3秒前
3秒前
我是老大应助轻松戎采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
YJ888发布了新的文献求助10
4秒前
pcr163发布了新的文献求助10
4秒前
4秒前
artoria完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
田様应助菜就多练采纳,获得10
5秒前
钟梓袄发布了新的文献求助10
6秒前
郭晓曼完成签到,获得积分10
7秒前
7秒前
wanci应助yae采纳,获得10
7秒前
weiwei04314发布了新的文献求助10
8秒前
8秒前
雪山飞龙发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
冷酷秋柳完成签到,获得积分10
9秒前
自然可乐发布了新的文献求助10
10秒前
希文完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784