亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Protein Structure Learning using a Size-Guided Conditional Mixture-of-Experts

计算机科学 人工智能 机器学习
作者
Mingzhi Yuan,Ao Shen,Siqi Yin,Yingfan Ma,Qiao Huang,Manning Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3607904
摘要

In recent years, deep learning on protein structures has attracted widespread attention, as structures determine proteins' function. A series of structure-based protein property prediction methods have been proposed, achieving remarkable performance. However, these methods often neglect the importance of the protein size and fail to fully leverage it, leading to biases toward certain sizes and suboptimal overall performance. To address this issue, we propose a protein size-guided conditional mixture-of-experts for improving deep learning on protein structures. It can adaptively activate the sub-networks with the guidance of protein sizes and network features. Its flexible combinations of sub-networks help mitigate biases toward certain protein sizes, while the deliberate incorporation of protein size guidance enables the network to effectively capture both universal and size-specific characteristics, resulting in more accurate predictive performance. Based on it, we propose a framework for protein property prediction and benchmark it on eight tasks with two representation forms of proteins and three different dataset splits, a total of forty-eight tests. Experiments show that our method can be seamlessly integrated into numerous existing models and achieve performance improvement across tasks under almost all settings. More importantly, our experiments reveal that although often overlooked, protein size serves as an important prior knowledge in deep learning on protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
4秒前
椰椰完成签到 ,获得积分10
5秒前
平城落叶完成签到,获得积分10
7秒前
所所应助俭朴的乐巧采纳,获得10
8秒前
Koala04完成签到,获得积分10
12秒前
完美世界应助严究生采纳,获得10
15秒前
vagary完成签到,获得积分10
15秒前
16秒前
20秒前
27秒前
完美世界应助安蓝采纳,获得10
32秒前
35秒前
41秒前
星辰大海应助俭朴的乐巧采纳,获得10
50秒前
Tirachen完成签到,获得积分20
51秒前
51秒前
55秒前
57秒前
安蓝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xz完成签到,获得积分10
1分钟前
1分钟前
Eileen完成签到 ,获得积分10
1分钟前
1分钟前
Memorialize完成签到,获得积分10
1分钟前
Eeeeven完成签到 ,获得积分10
1分钟前
wanci应助Pk采纳,获得10
1分钟前
1分钟前
1分钟前
随缘完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hy发布了新的文献求助10
1分钟前
1分钟前
bkagyin应助hy采纳,获得10
1分钟前
1分钟前
1分钟前
田様应助俭朴的乐巧采纳,获得10
1分钟前
tim发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4694544
求助须知:如何正确求助?哪些是违规求助? 4065030
关于积分的说明 12568438
捐赠科研通 3763781
什么是DOI,文献DOI怎么找? 2078693
邀请新用户注册赠送积分活动 1107019
科研通“疑难数据库(出版商)”最低求助积分说明 985209