亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic models for unplanned intensive care unit readmission risk prediction: A systematic review and meta‐analysis based on HSROC model

重症监护室 接收机工作特性 荟萃分析 医学 系统回顾 预测建模 风险评估 可靠性(半导体) 机械通风 重症监护 心理干预 机器学习 梅德林 重症监护医学 急诊医学 人工智能 计算机科学 内科学 政治学 法学 功率(物理) 物理 计算机安全 量子力学 精神科
作者
Huiling Hu,Jiashuai Li,Hui Ge,Bilin Wu,Tingting Feng,Xue Wu,Xuanna Wu
出处
期刊:Nursing in critical care [Wiley]
卷期号:30 (2)
标识
DOI:10.1111/nicc.13306
摘要

Intensive care unit (ICU) readmission is a critical factor in determining discharge timing and transitional care and is predicted by various models using different approaches. A systematic review is needed to assess the performance and applicability of these models. To identify prognostic models for unplanned ICU readmission and compare the performance of machine learning models with scoring systems. This is a systematic review and meta-analysis. We searched 11 databases up to August 21, 2024 for cohort studies on ICU readmission prediction models. The Prediction Model Risk of Bias Assessment Tool assessed model applicability and risk of bias, and meta-analysis was performed using the Hierarchical Summary Receiver Operating Characteristic Curve model in Stata 16.0. Of 2150 articles, 67 were included, describing 335 models and 67 scoring systems. Common predictors included mechanical ventilation, age, blood pressure, gender and heart rate. The meta-analysis of 199 models showed pooled sensitivities of 0.607 for scoring systems and 0.711 for machine learning models, with specificities of 0.699 and 0.899, respectively. Deep learning models had higher sensitivity (0.745) but lower specificity (0.709). All studies had a high risk of bias. Machine learning outperformed scoring systems but ignored clinical notes. Including unstructured text could improve predictions. Models need external validation to ensure reliability across institutions. Models for ICU readmission prediction will aid critical care nurses in identifying high-risk patients and prioritizing post-ICU care needs. This can support nurse-led interventions, improve patient safety and optimize resource allocation for transitional care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
21秒前
SDF完成签到,获得积分10
28秒前
在水一方应助靓丽寄文采纳,获得30
33秒前
42秒前
翟翟发布了新的文献求助10
46秒前
SDF发布了新的文献求助30
47秒前
53秒前
靓丽寄文发布了新的文献求助30
57秒前
传奇3应助育种小杰采纳,获得10
1分钟前
1分钟前
靓丽寄文完成签到,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
李爱国应助崔洪瑞采纳,获得10
2分钟前
3分钟前
育种小杰发布了新的文献求助10
3分钟前
bc应助megumin采纳,获得30
3分钟前
3分钟前
学术通zzz发布了新的文献求助10
3分钟前
3分钟前
球球球心完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI5应助lx采纳,获得10
3分钟前
lhw发布了新的文献求助10
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
彭于晏应助lhw采纳,获得10
3分钟前
星辰大海应助blueberry采纳,获得10
3分钟前
4分钟前
blueberry发布了新的文献求助10
4分钟前
李健的小迷弟应助lx采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
lx发布了新的文献求助10
4分钟前
4分钟前
lx发布了新的文献求助10
4分钟前
FLN发布了新的文献求助50
4分钟前
XiongLuck发布了新的文献求助10
4分钟前
点心完成签到,获得积分10
5分钟前
丘比特应助lx采纳,获得10
5分钟前
FLN完成签到,获得积分10
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359333
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713