Inner–Outer Sheath Synergistic Shielding of Polysulfides in Asymmetric Solvent-Based Electrolytes for Stable Sodium–Sulfur Batteries

化学 电解质 电磁屏蔽 硫黄 溶剂 无机化学 化学工程 有机化学 电极 物理化学 电气工程 工程类
作者
Weiqi Yao,Min‐Hao Pai,Arumugam Manthiram
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (14): 12061-12074 被引量:14
标识
DOI:10.1021/jacs.4c18374
摘要

Room-temperature sodium-sulfur (RT Na-S) batteries are garnering interest owing to their high theoretical energy density and low cost. However, the notorious shuttle behavior of sodium polysulfides (NaPS) and uncontrollable dendrite growth lead to the poor cycle stability of RT Na-S cells. In this work, we report the use of 1,2-dimethoxypropane (DMP) and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TFTFE) as inner solvent and outer diluent, respectively, in a localized high-concentration electrolyte system. Impressively, the asymmetric DMP as the inner solvent, introduced to replace the conventional solvent 1,2-dimethoxyethane (DME), shields NaPS effectively from incorporation into the inner solvation structure due to the extra methyl groups in the molecular structure. Furthermore, the TFTFE diluent, which contains electron-withdrawing perfluoro segments (-CF3- and -CF2-), exhibits significantly low solvation power. Consequently, the outer sheath TFTFE diluent further minimizes NaPS dissolution, thereby enhancing the cycle stability. This inner-outer sheath synergistic effect leads to the formation of highly effective cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers simultaneously, significantly alleviating the shuttle effect and reducing the side reactions between NaPS and sodium metal. Remarkably, the Na-S cells with the designed electrolyte present long-cycling reversibility with 530 mAh g-1 over 600 cycles at a C/2 rate and a low capacity decay rate of 0.077% per cycle. This study provides a profound understanding of the electrolyte structure involving NaPS and offers a firm basis for the rational design of electrolytes for rechargeable metal-sulfur battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫思菱完成签到,获得积分20
1秒前
1秒前
yznfly应助vv采纳,获得200
1秒前
1秒前
冯梦颖发布了新的文献求助10
2秒前
2秒前
归尘发布了新的文献求助10
2秒前
2秒前
Mia完成签到,获得积分10
3秒前
Hello应助高xy采纳,获得30
3秒前
番茄炒蛋完成签到,获得积分10
3秒前
bkagyin应助超能流水少年采纳,获得10
3秒前
Leif应助_Forelsket_采纳,获得40
5秒前
6秒前
6秒前
听雨眠发布了新的文献求助10
6秒前
土豆晴发布了新的文献求助10
7秒前
w1完成签到,获得积分10
7秒前
8秒前
8秒前
十分喜欢发布了新的文献求助10
8秒前
斯文败类应助静默采纳,获得10
8秒前
9秒前
落幕之后完成签到,获得积分20
9秒前
开朗梦曼发布了新的文献求助10
9秒前
CC完成签到 ,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
上官若男应助在在采纳,获得10
12秒前
12秒前
xin完成签到,获得积分10
13秒前
科研通AI6应助李四采纳,获得10
13秒前
14秒前
Hello应助失眠的耳机采纳,获得10
15秒前
Anita发布了新的文献求助10
15秒前
草莓发布了新的文献求助30
16秒前
16秒前
sarah发布了新的文献求助10
16秒前
hy完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039