ExSMART-PreRA: Explainable Survival and Risk Assessment Using Machine Learning for Time Estimation in Preclinical Rheumatoid Arthritis

类风湿性关节炎 医学 估计 计算机科学 机器学习 人工智能 肿瘤科 内科学 工程类 系统工程
作者
Fatemeh Salehi,Sara Bayat,Georg Schett,Arnd Kleyer,Thomas Altstidl,Bjoern M. Eskofier
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2025.3554364
摘要

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease affecting peripheral joints. Before clinical diagnosis, individuals may possess certain antibodies and experience discomfort but without specific signs of RA or inflamed joints. This stage is termed "preclinical RA," as these individuals are at risk of developing the disease. This early stage is difficult to define, necessitating the development of individual risk models. This study aims to estimate the time and risk of RA onset using various survival machine learning models. After identifying the best model, we stratify patients into risk categories and identify key risk factors. Data from 154 anonymized preclinical RA patients were collected and analyzed. Several survival analysis models were evaluated, including Survival Tree, Random Survival Forest, Extreme Gradient Boosting Survival, Linear Multi-Task Model, Neural Multi-Task Model, Support Vector Machines, and Cox Proportional Hazards. The Random Survival Forest model outperformed the others, achieving a mean C-index of 0.798. Using this model, patients were stratified into low-, medium-, and high-risk groups, facilitating personalized scheduling of clinical visits based on RA risk. To enhance model interpretability, SHapley Additive Explanations (SHAP) are employed to identify key risk factors. The baseline level of rheumatoid factor (RF) antibodies is the most significant predictor. Higher levels of anti-cyclic citrullinated peptide (anti-CCP) and RF antibodies at baseline are linked to earlier RA onset. This method provides valuable insights into key factors that might be overlooked in clinical practice and can improve patient management and quality of life for those at risk of developing RA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Scheduling完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
彼得大帝完成签到,获得积分10
3秒前
trq1007完成签到,获得积分10
3秒前
Xx完成签到,获得积分10
3秒前
saxg_hu完成签到,获得积分10
4秒前
Dong完成签到 ,获得积分10
5秒前
Finger完成签到,获得积分10
5秒前
西西发布了新的文献求助10
6秒前
赘婿应助DD采纳,获得10
8秒前
Siavy完成签到,获得积分10
8秒前
非而者厚应助强健的冰棍采纳,获得10
9秒前
呐呐呐完成签到 ,获得积分10
11秒前
稳重的秋天完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
西西完成签到,获得积分10
17秒前
17秒前
鲤鱼安青完成签到 ,获得积分10
18秒前
19秒前
bensonyang1013完成签到 ,获得积分10
22秒前
勤恳函完成签到,获得积分10
22秒前
活泼的烙完成签到 ,获得积分10
24秒前
冰魂应助Xu采纳,获得20
25秒前
悲凉的大娘完成签到 ,获得积分10
26秒前
CMD完成签到 ,获得积分10
27秒前
小贺完成签到,获得积分10
30秒前
Atlantis完成签到,获得积分10
30秒前
35秒前
Atlantis完成签到,获得积分10
36秒前
夜倾心完成签到,获得积分10
39秒前
weiliu发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
42秒前
老神在在完成签到,获得积分10
44秒前
苗条丹南完成签到 ,获得积分10
44秒前
45秒前
小马的可爱老婆完成签到,获得积分10
45秒前
小二郎应助飒飒采纳,获得10
47秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864070
求助须知:如何正确求助?哪些是违规求助? 3406385
关于积分的说明 10649562
捐赠科研通 3130343
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831656
科研通“疑难数据库(出版商)”最低求助积分说明 779992