Discrimination of Respiratory Tract Infections by a Reduced Graphene Oxide Array Modified with Metal−Organic Frameworks and Metal Phthalocyanines

石墨烯 金属有机骨架 材料科学 氧化物 金属 相(物质) 呼吸道 纳米技术 化学工程 无机化学 呼吸系统 化学 医学 有机化学 冶金 内科学 吸附 工程类
作者
Shiyuan Xu,Yi Huang,Dannv Ma,Jiaying Wu,Xuemei Liu,Qianru Zhang,Zhipeng Gu,Aiwu Pan,Jianmin Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (20): 19429-19441 被引量:6
标识
DOI:10.1021/acsnano.5c04231
摘要

As a prevalent clinical condition, it is critical to distinguish between bacterial and viral respiratory tract infections given their pivotal role in guiding appropriate pharmaceutical interventions and preventing antibiotic misuse. Exhaled breath (EB) contains a spectrum of disease-specific biomarkers, enabling precise diagnostic analysis. Thus, EB analysis using an electronic nose (e-nose) to record electrical response fingerprints and discriminate pathogens via machine learning algorithms has emerged as a promising noninvasive diagnostic technology. In this study, a graphene-based e-nose sensor array modified with metal-organic frameworks (MOFs) and metal phthalocyanines (MPcs) was developed by using multiple reduction methods. The sensor array demonstrated excellent capability in distinguishing between two types of EB samples collected from healthy individuals spiked with acetone and isoprene, which are closely associated with bacterial and viral respiratory infections. Furthermore, a diagnostic model was constructed using e-nose fingerprints from 145 clinical EB samples comprising 89 bacterial infection cases and 56 viral infection cases. A weighted fusion classification model, integrating the support vector machine, random forest, and Lasso regression (Lasso), achieved an accuracy of 83.7% in the validation group, with an area under the curve (AUC) of 0.87. An independent external clinical trial involving 43 respiratory infection patients (including 6 unidentified cases) yielded an accuracy of 75.7% and an AUC of 0.81 for distinguishing bacterial from viral infections. Additionally, the sensor array achieved a 75% accuracy rate in discriminating mycoplasma infections by using linear discriminant analysis. These results suggest that the graphene-based e-nose array modified with MOFs and MPcs is a promising tool for diagnosing respiratory tract infections, aiding in optimized treatment decisions and potentially improving therapeutic efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助min17采纳,获得10
1秒前
桐桐应助Wiz111采纳,获得10
1秒前
LONG完成签到,获得积分10
1秒前
1秒前
田様应助yunyunya采纳,获得10
2秒前
Moon发布了新的文献求助10
2秒前
烟花应助第三方斯蒂芬采纳,获得10
3秒前
充电宝应助July采纳,获得10
3秒前
3秒前
4秒前
虚心的清发布了新的文献求助10
4秒前
情怀应助咕噜采纳,获得10
4秒前
思源应助RicardoYe采纳,获得10
4秒前
玥越发布了新的文献求助10
5秒前
xy关闭了xy文献求助
5秒前
7秒前
7秒前
生物质炭完成签到,获得积分20
7秒前
赘婿应助清秀雁桃采纳,获得10
8秒前
ZHANG完成签到,获得积分10
8秒前
Love0704发布了新的文献求助80
8秒前
星空0427发布了新的文献求助10
9秒前
10秒前
Lucas应助hcxhch采纳,获得10
10秒前
11秒前
11秒前
精明尔曼完成签到,获得积分10
11秒前
碎碎完成签到,获得积分10
12秒前
13秒前
隐形曼青应助lss采纳,获得10
13秒前
桐桐应助潇涯采纳,获得10
14秒前
14秒前
zyt完成签到,获得积分10
15秒前
15秒前
ssh完成签到,获得积分20
15秒前
3dyf完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
碎碎发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319938
求助须知:如何正确求助?哪些是违规求助? 4461900
关于积分的说明 13885068
捐赠科研通 4352600
什么是DOI,文献DOI怎么找? 2390719
邀请新用户注册赠送积分活动 1384391
关于科研通互助平台的介绍 1354188