Achieving Nearly 100% Targeted Conversion of NO to NO2 through Cooperative Activation of Lattice Oxygen and Molecular Oxygen on Dual-Defect LaMnO3

氧气 格子(音乐) 对偶(语法数字) 分子氧 材料科学 结晶学 化学物理 化学 凝聚态物理 纳米技术 物理 有机化学 声学 文学类 艺术
作者
Z. Qian,Bo Yuan,Shiwei Sheng,Fei Lai,Jianjun Chen,Jinxing Mi,Zhao Ma,Runlong Hao,Junhua Li,Lidong Wang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (21): 10662-10671 被引量:2
标识
DOI:10.1021/acs.est.5c03218
摘要

Inhibiting the deposition of N species on the catalyst surface for the targeted oxidation of NO to NO2 is still a great challenge. Herein, a La and O dual-defective LaMnO3 (2U-L0.8MO) perovskite was fabricated using a urea-nonstoichiometric comodulation strategy, which achieved 97.6% NO oxidation efficiency at 210 °C and 300,000 h-1, and was also capable of nearly 100% targeted oxidation of NO to NO2, as well as exhibited excellent stability and recyclability. Characterizations and theoretical calculations unveiled that the urea-nonstoichiometric modulation method optimized the specific surface area and geometrical structure of perovskite, promoted the formation of La defects and oxygen vacancies (OVs), enhanced lattice oxygen activation and migration, and also facilitated the coadsorption of NO and O2 and increased the d-band center of the perovskite. The synergistic activation of lattice oxygen and molecular oxygen along with the low-temperature oxidation mechanisms of NO was finally revealed: the comodulation strategy caused stretching and distortion of the 2U-L0.8MO lattice, making its lattice oxygen susceptible to activation, thereby oxidizing adsorbed NO to NO2 and simultaneously generating OVs. Afterward, O2 would be captured by the abundant OVs on the 2U-L0.8MO surface and converted to superoxide O2-, which could not only directly oxidize NO but also transform into single 1O2 on the adjacent Mn4+ site for the targeted oxidation of NO. This work realizes the coactivation of O2 and lattice oxygen and also extends the understanding of the low-temperature-targeted oxidation of NO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
orixero应助舒一一采纳,获得10
7秒前
8秒前
灰灰12138完成签到,获得积分10
9秒前
yu驳回了Adc应助
10秒前
绝世冰淇淋完成签到 ,获得积分10
10秒前
10秒前
11秒前
lxy发布了新的文献求助10
14秒前
15秒前
Adc应助瘦瘦的映安采纳,获得10
17秒前
我是老大应助无情夏槐采纳,获得10
18秒前
19秒前
科研小菜发布了新的文献求助10
20秒前
22秒前
踏实龙猫发布了新的文献求助10
23秒前
23秒前
24秒前
悦耳的曼安完成签到,获得积分10
25秒前
27秒前
打打应助科研小菜采纳,获得10
27秒前
111发布了新的文献求助10
27秒前
123发布了新的文献求助10
28秒前
28秒前
30秒前
33秒前
科研通AI6.2应助123采纳,获得10
36秒前
Z赵完成签到 ,获得积分10
36秒前
无情夏槐发布了新的文献求助10
36秒前
酷波er应助开放的水壶采纳,获得10
36秒前
37秒前
lxy完成签到,获得积分10
38秒前
香蕉觅云应助苏兜兜采纳,获得10
40秒前
lawrence完成签到 ,获得积分10
41秒前
wickedzz完成签到,获得积分10
42秒前
Yashyi发布了新的文献求助10
42秒前
Ava应助搞怪的溪灵采纳,获得10
43秒前
43秒前
Wang_ZiMo发布了新的文献求助10
43秒前
yxf完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874189
求助须知:如何正确求助?哪些是违规求助? 6505378
关于积分的说明 15673493
捐赠科研通 4991838
什么是DOI,文献DOI怎么找? 2690775
邀请新用户注册赠送积分活动 1633334
关于科研通互助平台的介绍 1590997