Achieving Nearly 100% Targeted Conversion of NO to NO2 through Cooperative Activation of Lattice Oxygen and Molecular Oxygen on Dual-Defect LaMnO3

氧气 格子(音乐) 对偶(语法数字) 分子氧 材料科学 结晶学 化学物理 化学 凝聚态物理 纳米技术 物理 有机化学 声学 文学类 艺术
作者
Z. Qian,Bo Yuan,Shiwei Sheng,Fei Lai,Jianjun Chen,Jinxing Mi,Zhao Ma,Runlong Hao,Junhua Li,Lidong Wang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (21): 10662-10671 被引量:2
标识
DOI:10.1021/acs.est.5c03218
摘要

Inhibiting the deposition of N species on the catalyst surface for the targeted oxidation of NO to NO2 is still a great challenge. Herein, a La and O dual-defective LaMnO3 (2U-L0.8MO) perovskite was fabricated using a urea-nonstoichiometric comodulation strategy, which achieved 97.6% NO oxidation efficiency at 210 °C and 300,000 h-1, and was also capable of nearly 100% targeted oxidation of NO to NO2, as well as exhibited excellent stability and recyclability. Characterizations and theoretical calculations unveiled that the urea-nonstoichiometric modulation method optimized the specific surface area and geometrical structure of perovskite, promoted the formation of La defects and oxygen vacancies (OVs), enhanced lattice oxygen activation and migration, and also facilitated the coadsorption of NO and O2 and increased the d-band center of the perovskite. The synergistic activation of lattice oxygen and molecular oxygen along with the low-temperature oxidation mechanisms of NO was finally revealed: the comodulation strategy caused stretching and distortion of the 2U-L0.8MO lattice, making its lattice oxygen susceptible to activation, thereby oxidizing adsorbed NO to NO2 and simultaneously generating OVs. Afterward, O2 would be captured by the abundant OVs on the 2U-L0.8MO surface and converted to superoxide O2-, which could not only directly oxidize NO but also transform into single 1O2 on the adjacent Mn4+ site for the targeted oxidation of NO. This work realizes the coactivation of O2 and lattice oxygen and also extends the understanding of the low-temperature-targeted oxidation of NO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
1秒前
permanent发布了新的文献求助30
1秒前
脑洞疼应助lulu采纳,获得10
3秒前
岸边完成签到,获得积分10
3秒前
4秒前
4秒前
胡图图发布了新的文献求助10
4秒前
稀饭完成签到,获得积分10
4秒前
卷卷卷儿发布了新的文献求助10
4秒前
5秒前
王道远完成签到 ,获得积分10
7秒前
科研通AI2S应助ddd采纳,获得10
7秒前
8秒前
辛勤的刺猬完成签到 ,获得积分10
8秒前
9秒前
9秒前
wanci应助zhscu采纳,获得10
9秒前
务实的紫伊完成签到,获得积分10
10秒前
汐尘完成签到,获得积分10
11秒前
GuMingyang发布了新的文献求助10
11秒前
王道远关注了科研通微信公众号
11秒前
野性的友灵完成签到,获得积分10
12秒前
今后应助祝余采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
呆萌的秋天完成签到,获得积分10
15秒前
permanent完成签到,获得积分10
16秒前
在水一方应助aaawen采纳,获得10
16秒前
我是老大应助风趣问蕊采纳,获得10
16秒前
Mansis发布了新的文献求助10
17秒前
18秒前
你你你完成签到,获得积分10
18秒前
九三完成签到,获得积分10
19秒前
LAST完成签到,获得积分10
19秒前
Hello应助洁净的孤萍采纳,获得10
19秒前
一穷二百完成签到,获得积分10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496914
求助须知:如何正确求助?哪些是违规求助? 4594564
关于积分的说明 14445334
捐赠科研通 4527172
什么是DOI,文献DOI怎么找? 2480728
邀请新用户注册赠送积分活动 1465186
关于科研通互助平台的介绍 1437878