Soil treatment with natural materials is an effective method to improve the mechanical properties of the original soil for recycling engineering construction. This research aims to evaluate the synergistic effects of lignin fiber and cement on sandy clayey silt stabilization. A factorial experimental design was employed, testing five lignin fiber contents (0%, 2%, 4%, 6%, and 8%) and three cement contents (0%, 2%, and 4%) across four curing periods (1, 7, 14, and 30 days). Unconfined compressive strength (UCS) tests were conducted in triplicate for each combination (total *n* = 180 samples), and failure surfaces were analyzed using Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM-EDX). Results indicate a critical lignin fiber threshold of 4%, beyond which UCS decreased by 15–20% due to increased void ratios. Statistical analysis (ANOVA, *p* < 0.05) confirmed significant interactions between lignin fiber, cement content, and curing time. For instance, 4% lignin fiber and 4% cement yielded a 139% UCS increase after 30-day curing compared to untreated soil. SEM-EDX revealed that lignin fiber networks enhance ductility by bridging soil particles, while cement hydration reduced particle detachment. These findings provide a quantitative framework for optimizing lignin fiber-cement stabilization in sustainable geotechnical applications.