清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrative radiomics analysis of peri-tumoral and habitat zones for predicting major pathological response to neoadjuvant immunotherapy and chemotherapy in non-small cell lung cancer

医学 化疗 病态的 免疫疗法 无线电技术 肺癌 肿瘤科 佩里 癌症 癌症研究 病理 内科学 放射科
作者
Dan Han,Junfeng Zhao,Shaoyu Hao,Shenbo Fu,Ran Wei,Xin Zheng,Qian Zhao,Chengxin Liu,Hongfu Sun,Chengrui Fu,Zhongtang Wang,Wei Huang,Baosheng Li
出处
期刊:Translational lung cancer research [AME Publishing Company]
卷期号:14 (4): 1168-1184
标识
DOI:10.21037/tlcr-2024-1131
摘要

It is crucial for clinical decision-making to identify non-small cell lung cancer (NSCLC) patients who are likely to achieve major pathological response (MPR) following neoadjuvant immunotherapy and chemotherapy (NICT). This study conducted a thorough analysis of the regions surrounding and within resectable NSCLC tumors, creating an integrative tumor microenvironment model that encompasses features of both the peri-tumoral areas and habitat-based subregions, aiming at enhancing accurate predictions and supporting clinical decision-making processes. Our study involved an analysis of 243 NSCLC patients from three centers, treated with NICT and surgery and categorized into training, validation, and test cohorts. We conducted an extensive analysis of the tumor area, examining the intra-tumoral zone and the surrounding peri-tumoral regions at 2 mm, 4 mm and 6 mm, developing an algorithm for delineating tumor habitats. Features were standardized with Z-scores and de-duplicated by retaining one from each highly correlated pair. We finalized the feature set using least absolute shrinkage and selection operator (LASSO) regression and 10-fold cross-validation, forming a robust radiomics signature for machine learning models. Clinical features underwent univariable and multivariable analyses, combining with peri-tumoral and habitat signatures in a nomogram, of which its diagnostic accuracy and clinical utility were evaluated using receiver operating characteristic (ROC), calibration curves, and decision curve analysis (DCA). The cohort showed a 68% MPR rate, with histology identified as a key predictor. An integrated nomogram including histology, Peri6mm and habitat signatures outperformed individual models with an area under the curve (AUC) of 0.894 in the training cohort, 0.831 in validation and 0.799 in testing. The nomogram demonstrated a clear advantage in predictive probabilities, as evidenced by DCA curve results. Our study's development of a predictive model using a nomogram integrating clinical and radiomics features significantly improved MPR prediction in NSCLC patients undergoing NICT, enhancing clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raunio完成签到,获得积分10
23秒前
情怀应助明亮娩采纳,获得10
24秒前
夕木完成签到 ,获得积分10
29秒前
krislan完成签到,获得积分10
29秒前
33秒前
明亮娩发布了新的文献求助10
38秒前
乐乐应助明亮娩采纳,获得10
49秒前
Serendipity应助科研通管家采纳,获得10
54秒前
Serendipity应助科研通管家采纳,获得10
54秒前
Serendipity应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
Serendipity应助科研通管家采纳,获得10
54秒前
量子星尘发布了新的文献求助10
1分钟前
葛力发布了新的文献求助10
2分钟前
2分钟前
紫熊完成签到,获得积分10
2分钟前
meimei完成签到 ,获得积分10
2分钟前
nav完成签到 ,获得积分10
2分钟前
Serendipity应助科研通管家采纳,获得20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Krim完成签到 ,获得积分10
3分钟前
酷波er应助方方博采纳,获得10
3分钟前
3分钟前
方方博发布了新的文献求助10
3分钟前
li完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
Jiygua完成签到,获得积分10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
cheng完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
你您发布了新的文献求助30
5分钟前
安静严青完成签到 ,获得积分10
5分钟前
思源应助liuyiman采纳,获得10
5分钟前
xiaozou55完成签到 ,获得积分10
6分钟前
6分钟前
Jiygua发布了新的文献求助10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4216758
求助须知:如何正确求助?哪些是违规求助? 3750878
关于积分的说明 11795987
捐赠科研通 3416094
什么是DOI,文献DOI怎么找? 1874922
邀请新用户注册赠送积分活动 928713
科研通“疑难数据库(出版商)”最低求助积分说明 837768