清脆的
生物传感器
DNA
计算生物学
计算机科学
化学
分子生物学
纳米技术
生物
材料科学
遗传学
基因
作者
Xindan Zhang,Minkang Wu,Haoran Shi,Soochan Kim,Shixiang Lü,Ping Wang,Jieling Qin
标识
DOI:10.34133/cbsystems.0266
摘要
Fusobacterium nucleatum, a bacterium linked to colorectal cancer, possesses a specific gene called fadA that serves as an early diagnostic biomarker. The CRISPR/Cas12a system has demonstrated marked potential for nucleic acid detection due to its satisfactory selectivity and trans-cleavage ability. However, most CRISPR/Cas-based sensors suffer from problems such as probe entanglement or local aggregation, reducing the Cas enzyme efficiency. In this study, an amplification-free biosensing platform for ultrasensitive detection of F. nucleatum was developed by integrating the highly specific CRISPR/AsCas12a with an improved electrochemiluminescence (ECL) biosensor. Different from the conventional 1- or 2-dimensional probes, the platform was constructed by tetrahedral DNA nanostructure (TDN) probes conjugated with quenchers and coralliform gold (CFAu) functionalized with luminescent agents. The TDN serves as an exceptional scaffold to modulate the recognition unit, substantially enhancing the recognition and cleavage efficiency of AsCas12a toward the probes. Furthermore, the high surface area of CFAu provides extensive landing sites for the luminescent agents, thereby improving the detection sensitivity. The prepared ECL biosensor exhibited a wider linear range (10 fM to 100 nM) and was capable of detecting F. nucleatum down to 1 colony-forming unit/ml. Additionally, the high mismatch sensitivity of AsCas12a to protospacer adjacent motifs and nearby areas provides a strategy for distinguishing mutant from wild-type sequences. Finally, by designing CRISPR RNA (crRNA), this diagnostic method can also be easily modified to detect other bacteria or biomarkers for the early diagnosis of various diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI