Cardiometabolic index predicts cardiovascular events in aging population: a machine learning-based risk prediction framework from a large-scale longitudinal study

索引(排版) 比例(比率) 人口 医学 计算机科学 内科学 人工智能 机器学习 环境卫生 地图学 地理 万维网
作者
Yuan-Xi Luo,Zhiyang Yin,Lin Xin,Chong Sheng,Ping Zhang,Dongjin Wang,Yunxing Xue
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fendo.2025.1551779
摘要

Background While the Cardiometabolic Index (CMI) serves as a novel marker for assessing adipose tissue distribution and metabolic function, its prognostic utility for cardiovascular disease (CVD) events remains incompletely understood. This investigation sought to elucidate the predictive capabilities of CMI for cardiovascular outcomes and explore underlying mechanistic pathways to establish a comprehensive risk prediction framework. Methods The study encompassed 7,822 individuals from a national health and retirement longitudinal cohort, with participants stratified by CMI quartiles. Following baseline characteristic comparisons and CVD incidence rate calculations, we implemented multiple Cox regression models to assess CMI’s cardiovascular risk prediction capabilities. For nomogram construction, we utilized an ensemble machine learning framework, combining Boruta algorithm-based feature selection with Random Forest (RF) and XGBoost analyses to determine key predictive parameters. Results Throughout the median follow-up duration of 84 months, we documented 1,500 incident CVD cases, comprising 1,148 cardiac events and 488 cerebrovascular events. CVD incidence demonstrated a positive gradient across ascending CMI quartiles. Multivariate Cox regression analysis, adjusting for potential confounders, confirmed a significant association between CMI and CVD risk. Notably, mediation analyses revealed that hypertension and glycated hemoglobin (HbA1c) potentially serve as mechanistic intermediaries in the CMI-CVD relationship. Sex-stratified analyses suggested differential predictive patterns between gender subgroups. Given CMI’s robust and consistent predictive capability for stroke outcomes, we developed a machine learning-derived nomogram incorporating five key predictors: age, CMI, hypertension status, high-sensitivity C-reactive protein (hsCRP) and renal function (measured as serum creatinine). The nomogram demonstrated strong discriminative ability, achieving areas under the receiver operating characteristic curve (AUC) of 0.76 (95% CI: 0.56-0.97) and 0.74 (95% CI: 0.66-0.81) for 2-year and 6-year stroke prediction, respectively. Conclusions Our findings establish CMI as a significant predictor of cardiovascular events in the aging population, with the relationship partially mediated through hypertension and insulin resistance pathways. The validated nomogram, developed using longitudinal data from a substantial elderly cohort, incorporates CMI to enable preclinical risk stratification, supporting timely preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝儿完成签到 ,获得积分10
刚刚
刚刚
开朗问晴完成签到,获得积分10
1秒前
1秒前
敏儿发布了新的文献求助10
1秒前
隐形曼青应助标致乐双采纳,获得30
1秒前
Luka应助舒适若颜采纳,获得30
1秒前
茶弥完成签到 ,获得积分10
2秒前
123完成签到,获得积分20
2秒前
3秒前
悲伤肉丸发布了新的文献求助10
4秒前
哈哈镜阿姐完成签到,获得积分10
5秒前
Akim应助xiaose采纳,获得10
6秒前
华仔应助文静的冷雪采纳,获得30
7秒前
dd完成签到,获得积分10
7秒前
秦苏完成签到,获得积分10
7秒前
共享精神应助aiming采纳,获得10
8秒前
舒心的初露完成签到,获得积分10
8秒前
9秒前
张薪吾发布了新的文献求助10
10秒前
浮生若梦完成签到 ,获得积分10
10秒前
随风而动123完成签到,获得积分10
10秒前
11秒前
大方藏花完成签到,获得积分20
11秒前
12秒前
12秒前
默认用户名完成签到,获得积分10
12秒前
trial发布了新的文献求助10
13秒前
吴世龙发布了新的文献求助10
13秒前
掉渣的饼干完成签到,获得积分10
13秒前
14秒前
15秒前
短短急个球完成签到,获得积分10
15秒前
Freya完成签到,获得积分10
18秒前
夏夏1992发布了新的文献求助10
18秒前
18秒前
标致乐双发布了新的文献求助30
19秒前
19秒前
relink完成签到,获得积分10
20秒前
大胆的弼完成签到,获得积分10
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841815
求助须知:如何正确求助?哪些是违规求助? 3383873
关于积分的说明 10531596
捐赠科研通 3103984
什么是DOI,文献DOI怎么找? 1709463
邀请新用户注册赠送积分活动 823263
科研通“疑难数据库(出版商)”最低求助积分说明 773868