Adaptive Region-Specific Loss for Improved Medical Image Segmentation

计算机科学 加权 人工智能 分割 图像分割 人工神经网络 图像(数学) 深度学习 模式识别(心理学) 机器学习 功能(生物学) 数据挖掘 医学 放射科 进化生物学 生物
作者
Yizheng Chen,Lequan Yu,Jen‐Yeu Wang,Neil Panjwani,Jean‐Pierre Obeid,Wu Liu,Lianli Liu,Nataliya Kovalchuk,Michael F. Gensheimer,Lucas K. Vitzthum,Beth M. Beadle,Daniel T. Chang,Quynh‐Thu Le,Bin Han,Lei Xing
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13408-13421 被引量:27
标识
DOI:10.1109/tpami.2023.3289667
摘要

Defining the loss function is an important part of neural network design and critically determines the success of deep learning modeling. A significant shortcoming of the conventional loss functions is that they weight all regions in the input image volume equally, despite the fact that the system is known to be heterogeneous (i.e., some regions can achieve high prediction performance more easily than others). Here, we introduce a region-specific loss to lift the implicit assumption of homogeneous weighting for better learning. We divide the entire volume into multiple sub-regions, each with an individualized loss constructed for optimal local performance. Effectively, this scheme imposes higher weightings on the sub-regions that are more difficult to segment, and vice versa . Furthermore, the regional false positive and false negative errors are computed for each input image during a training step and the regional penalty is adjusted accordingly to enhance the overall accuracy of the prediction. Using different public and in-house medical image datasets, we demonstrate that the proposed regionally adaptive loss paradigm outperforms conventional methods in the multi-organ segmentations, without any modification to the neural network architecture or additional data preparation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
没有昵称发布了新的文献求助10
刚刚
2秒前
汉堡包应助lily336699采纳,获得10
4秒前
5秒前
天天快乐应助浩西采纳,获得10
5秒前
柚子发布了新的文献求助10
5秒前
6秒前
6秒前
斑斑点点公鸡树完成签到,获得积分10
7秒前
cwy发布了新的文献求助10
7秒前
BING完成签到 ,获得积分10
8秒前
我是老大应助仙笛童神采纳,获得10
8秒前
打打应助yuyu采纳,获得10
9秒前
shang发布了新的文献求助10
10秒前
东风发布了新的文献求助10
11秒前
动漫大师发布了新的文献求助10
13秒前
14秒前
Owen应助wodeqiche2007采纳,获得30
16秒前
深情安青应助杨丙鑫采纳,获得10
17秒前
小二郎应助mxdckd采纳,获得10
18秒前
20秒前
打打应助不想搞科研采纳,获得10
21秒前
21秒前
23秒前
啊啊啊完成签到,获得积分10
25秒前
25秒前
21发布了新的文献求助10
27秒前
Rita应助闫111采纳,获得10
28秒前
30秒前
李爱国应助科研通管家采纳,获得10
31秒前
31秒前
ZhouYW应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
ZhouYW应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102