Crack detection of continuous casting slab by evolutionary topology backbone search

计算机科学 进化算法 修剪 冗余(工程) 算法 人工智能 遗传算法 计算复杂性理论 网络拓扑 一般化 机器学习 数学 数学分析 农学 生物 操作系统
作者
Tianchen Zhao,Xianpeng Wang,Xiangman Song,Chang Liu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110663-110663 被引量:1
标识
DOI:10.1016/j.asoc.2023.110663
摘要

In recent years, computer vision-based methods have been widely used in steel defect detection. Traditional image detection methods mainly rely on manually extracted features, resulting in poor generalization. Deep learning methods are sensitive to the number of samples, and the network structure design relies heavily on manual experience. To address these problems, a backbone network search algorithm based on evolutionary topology is proposed in this paper for crack detection on continuous casting surfaces. Firstly, a variable-length genetic encoding scheme is designed for industrial defect problems with different data complexity, which can improve the applicability of the algorithm and extend the search space. Secondly, to effectively solve the channel redundancy problem in densely connected CNNs, a random pruning strategy for network connection channels is proposed to reduce the topological space and the complexity of the model. Finally, a computational resource allocation mechanism based on a dynamic surrogate model is devised. The surrogate model predicts the individual performance to ensure that computational resources can be concentrated on individuals with better quality. In addition to the steel crack image dataset, the proposed method also uses the workpiece crack image dataset for a supplementary experiment. Experimental results show that the proposed algorithm can achieve better detection performance with fewer computational resources compared to manually designed deep learning algorithms and classical approaches that use evolutionary algorithms to search network architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助moon采纳,获得10
2秒前
闪闪的斑马完成签到,获得积分10
4秒前
7秒前
无限小天鹅完成签到,获得积分10
8秒前
waayu完成签到 ,获得积分10
8秒前
哟呵完成签到,获得积分0
8秒前
8秒前
123完成签到,获得积分10
9秒前
高兴的斑马完成签到 ,获得积分10
13秒前
benlaron发布了新的文献求助30
15秒前
15秒前
MRM完成签到 ,获得积分10
25秒前
77完成签到,获得积分10
26秒前
27秒前
Lucas应助benlaron采纳,获得30
27秒前
怡然的白开水完成签到 ,获得积分10
28秒前
29秒前
艾瑞克完成签到,获得积分10
35秒前
顺心香菇应助科研通管家采纳,获得60
35秒前
FashionBoy应助科研通管家采纳,获得10
35秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
张小苟完成签到,获得积分10
35秒前
pluto应助科研通管家采纳,获得10
35秒前
小马甲应助科研通管家采纳,获得10
35秒前
顾矜应助zz采纳,获得10
35秒前
小二郎应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
Dr.老王完成签到,获得积分10
38秒前
38秒前
40秒前
缥缈纲完成签到,获得积分10
41秒前
42秒前
benlaron完成签到,获得积分10
42秒前
mmz完成签到 ,获得积分10
43秒前
43秒前
欢呼煎蛋发布了新的文献求助10
44秒前
二二完成签到 ,获得积分10
46秒前
Plum22发布了新的文献求助50
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315