An attention‐based deep learning model for credibility assessment of online health information

可靠性 计算机科学 人工智能 机器学习 深度学习 卷积神经网络 召回 F1得分 精确性和召回率 循环神经网络 人工神经网络 心理学 政治学 认知心理学 法学
作者
Swarup Padhy,Santosh Singh Rathore
出处
期刊:Computational Intelligence [Wiley]
卷期号:39 (5): 832-859 被引量:3
标识
DOI:10.1111/coin.12596
摘要

Abstract With the surge of searching and reading online health‐based articles, maintaining the quality and credibility of online health‐based articles has become crucial. The circulation of deceptive health information on numerous social media sites can mislead people and can potentially cause adverse effects on people's health. To address these problems, this work uses deep learning approaches to automate the assessment and scoring of online health‐related articles' credibility. The paper proposed an Attention‐based Recurrent Multichannel Convolutional Neural Network (ARMCNN) model. The proposed model incorporates a BiLSTM layer, a multichannel CNN layer, and an attention layer and predicts the credibility of online health information. To perform a reliable evaluation of the presented model, we utilize the health articles reviewed by the experts, compiled in a labeled dataset termed “Pubhealth,” which consists of thousands of health articles. The results are evaluated using five performance measures, accuracy, precision, recall, f1‐score, and area under the ROC curve (AUC). Furthermore, we extensively compared the proposed model with different deep learning and machine learning models such as Long short‐term memory (LSTM), Bidirectional LSTM, CNN (Convolutional neural network), and RNN‐CNN. The experimental results showed that the proposed model produced state‐of‐the‐art performance on the used dataset by achieving an accuracy of 0.88, precision of 0.92, recall of 0.87, f1‐score of 0.90, and AUC of 0.94. Further, the proposed model yielded better performance than other benchmarked techniques for the credibility assessment of online health articles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的__完成签到 ,获得积分10
刚刚
研友_LOq0QZ完成签到,获得积分10
刚刚
1秒前
今后应助碑海北采纳,获得30
1秒前
池木发布了新的文献求助10
1秒前
任性乌冬面关注了科研通微信公众号
2秒前
2秒前
杰尼龟发布了新的文献求助100
3秒前
英姑应助等待冰香采纳,获得30
4秒前
5秒前
XIAO完成签到,获得积分10
5秒前
笨笨的发布了新的文献求助10
6秒前
6秒前
热心的银耳汤完成签到 ,获得积分10
7秒前
隐形曼青应助多年以后采纳,获得10
8秒前
Bean发布了新的文献求助30
9秒前
香蕉觅云应助孤灯剑客采纳,获得10
10秒前
徐俪丹发布了新的文献求助10
11秒前
bagai完成签到,获得积分10
12秒前
从朝祥关注了科研通微信公众号
12秒前
666完成签到,获得积分10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
dhz发布了新的文献求助10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
唐泽雪穗应助科研通管家采纳,获得10
13秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
科研通AI5应助宋思博采纳,获得10
13秒前
SS完成签到,获得积分10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
wanci应助yelide采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
xzy998应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727442
求助须知:如何正确求助?哪些是违规求助? 4084047
关于积分的说明 12631452
捐赠科研通 3790710
什么是DOI,文献DOI怎么找? 2093421
邀请新用户注册赠送积分活动 1119233
科研通“疑难数据库(出版商)”最低求助积分说明 995469