A Lightweight Pre-Crash Occupant Injury Prediction Model Distills Knowledge From Its Post-Crash Counterpart

撞车 计算机科学 碰撞 预测建模 机器学习 人工智能 模拟 计算机安全 程序设计语言
作者
Qingfan Wang,Ruiyang Li,Shi Shang,Qing Zhou,Bingbing Nie
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:146 (3) 被引量:2
标识
DOI:10.1115/1.4063033
摘要

Accurate occupant injury prediction in near-collision scenarios is vital in guiding intelligent vehicles to find the optimal collision condition with minimal injury risks. Existing studies focused on boosting prediction performance by introducing deep-learning models but encountered computational burdens due to the inherent high model complexity. To better balance these two traditionally contradictory factors, this study proposed a training method for pre-crash injury prediction models, namely, knowledge distillation (KD)-based training. This method was inspired by the idea of knowledge distillation, an emerging model compression method. Technically, we first trained a high-accuracy injury prediction model using informative post-crash sequence inputs (i.e., vehicle crash pulses) and a relatively complex network architecture as an experienced "teacher". Following this, a lightweight pre-crash injury prediction model ("student") learned both from the ground truth in output layers (i.e., conventional prediction loss) and its teacher in intermediate layers (i.e., distillation loss). In such a step-by-step teaching framework, the pre-crash model significantly improved the prediction accuracy of occupant's head abbreviated injury scale (AIS) (i.e., from 77.2% to 83.2%) without sacrificing computational efficiency. Multiple validation experiments proved the effectiveness of the proposed KD-based training framework. This study is expected to provide reference to balancing prediction accuracy and computational efficiency of pre-crash injury prediction models, promoting the further safety improvement of next-generation intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUKAILIMAI发布了新的文献求助10
2秒前
2秒前
2秒前
彭于晏应助aizhujun采纳,获得10
3秒前
王大可完成签到 ,获得积分10
3秒前
科目三应助handan采纳,获得10
4秒前
船夫发布了新的文献求助10
5秒前
alooof完成签到 ,获得积分10
5秒前
雨一直下完成签到,获得积分10
6秒前
qiu完成签到,获得积分10
6秒前
fate发布了新的文献求助10
7秒前
Caism发布了新的文献求助10
8秒前
田様应助bsn采纳,获得10
9秒前
赘婿应助云上人采纳,获得10
10秒前
Nzoth完成签到,获得积分10
12秒前
情怀应助迅速的听云采纳,获得10
14秒前
SUKAILIMAI完成签到,获得积分10
15秒前
Caism完成签到,获得积分10
15秒前
16秒前
16秒前
Owen应助putongshiming采纳,获得10
17秒前
18秒前
万能图书馆应助袁钢采纳,获得10
18秒前
19秒前
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
肖耶啵应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818417
求助须知:如何正确求助?哪些是违规求助? 3361563
关于积分的说明 10413396
捐赠科研通 3079823
什么是DOI,文献DOI怎么找? 1693118
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768209