Reinforcement learning of route choice considering traveler’s preference

偏爱 强化学习 偏好学习 计算机科学 钢筋 旅游行为 增强学习 过程(计算) 运筹学 人工智能 微观经济学 工程类 经济 心理学 社会心理学 操作系统
作者
Xueqin Long,Jianxu Mao,Zhongbao Qiao,Peng Li,Wei He
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Taylor & Francis]
卷期号:: 1-14 被引量:3
标识
DOI:10.1080/19427867.2023.2231689
摘要

ABSTRACTABSTRACTTravelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the futureKEYWORDS: Route choicereinforcement learninggeneralized travel timeindifference thresholdcompulsive preference AcknowledgmentsThis work was supported by the National Key Research and Development Program (2019YFB1600500); Science Program of Shaanxi Province (2021JQ-276).Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementNo data, models, or code were generated or used during the study.Additional informationFundingThe work was supported by the Science program of Shaanxi Province [2021JQ-276].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arff发布了新的文献求助10
刚刚
你好发布了新的文献求助10
刚刚
体贴问玉发布了新的文献求助10
刚刚
源于期待发布了新的文献求助10
1秒前
Mhj13810完成签到,获得积分10
2秒前
Bronya完成签到 ,获得积分10
2秒前
3秒前
CodeCraft应助鑫渊采纳,获得10
3秒前
3秒前
源于期待完成签到,获得积分10
6秒前
6秒前
犇骉完成签到,获得积分10
6秒前
Mhj13810发布了新的文献求助10
9秒前
9秒前
Akim应助Ken酱采纳,获得10
9秒前
xiaoxin123发布了新的文献求助10
9秒前
10秒前
Hello应助你好采纳,获得10
10秒前
小豆芽完成签到,获得积分10
10秒前
研友_RLNzvL完成签到,获得积分10
11秒前
13秒前
16秒前
16秒前
root发布了新的文献求助10
19秒前
鑫渊发布了新的文献求助10
20秒前
21秒前
21秒前
所所应助妮妮采纳,获得10
22秒前
23秒前
Ankher应助无辜澜采纳,获得200
23秒前
magiczhu完成签到,获得积分10
24秒前
25秒前
Ken酱发布了新的文献求助10
27秒前
大腚疯猪应助科研通管家采纳,获得20
30秒前
wise111发布了新的文献求助20
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
尔烟应助科研通管家采纳,获得10
30秒前
打打应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
wanci应助科研通管家采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572