亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hard Sample Aware Network for Contrastive Deep Graph Clustering

加权 聚类分析 样品(材料) 计算机科学 相似性(几何) 数据挖掘 不相交集 判别式 人工智能 图形 代表性启发 模式识别(心理学) 算法 理论计算机科学 数学 图像(数学) 统计 医学 化学 色谱法 组合数学 放射科
作者
Yue Liu,Xihong Yang,Sihang Zhou,Xinwang Liu,Zhen Wang,Ke Liang,Wenxuan Tu,Liang Li,Jingcan Duan,Cancan Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (7): 8914-8922 被引量:57
标识
DOI:10.1609/aaai.v37i7.26071
摘要

Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method. The source code of HSAN is shared at https://github.com/yueliu1999/HSAN and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
量子星尘发布了新的文献求助10
13秒前
芋泥面包发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
25秒前
33秒前
35秒前
36秒前
39秒前
胡沐恬发布了新的文献求助10
40秒前
灯飞发布了新的文献求助30
41秒前
心灵美语兰完成签到 ,获得积分10
46秒前
今后应助失眠宫苴采纳,获得10
52秒前
59秒前
失眠宫苴发布了新的文献求助10
1分钟前
1分钟前
有害学术辣鸡完成签到 ,获得积分10
1分钟前
Faith发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
刘一发布了新的文献求助10
1分钟前
顾矜应助芋泥面包采纳,获得10
1分钟前
雨相所至发布了新的文献求助10
1分钟前
刘一完成签到,获得积分10
1分钟前
1分钟前
芋泥面包发布了新的文献求助10
1分钟前
1分钟前
byho应助猪猪采纳,获得10
1分钟前
1分钟前
Marshall完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Faith完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Dritsw应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972762
求助须知:如何正确求助?哪些是违规求助? 3517085
关于积分的说明 11186140
捐赠科研通 3252538
什么是DOI,文献DOI怎么找? 1796527
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805652