陀螺仪
卡尔曼滤波器
惯性测量装置
传感器融合
航向(导航)
计算机科学
保险丝(电气)
定位系统
室内定位系统
扩展卡尔曼滤波器
惯性导航系统
姿态和航向参考系统
加速度计
计算机视觉
人工智能
工程类
惯性参考系
声学
物理
电气工程
量子力学
节点(物理)
航空航天工程
操作系统
作者
Yufeng Chen,Jintao Ding
摘要
The positioning of indoor mobile machines cannot be solved by a single sensor. A positioning system based on multi-sensor data fusion is designed. The system combines the positioning results of UWB with the positioning results of low-cost MEMS inertial measurement elements to improve the positioning accuracy of the system. The system includes two Kalman filters. The primary Kalman filter is used to fuse the angular velocity information of gyroscope and the angular value of magnetometer, so as to obtain more accurate heading angle. The secondary Kalman filter combines the IMU track estimation results with the UWB positioning results to obtain accurate positioning results. The final experimental results show that the method is effective.
科研通智能强力驱动
Strongly Powered by AbleSci AI