Adaptive Kriging-based Bayesian updating of model and reliability

克里金 贝叶斯概率 计算机科学 功能(生物学) 可靠性(半导体) 差异(会计) 趋同(经济学) 似然函数 贝叶斯推理 算法 机器学习 数学优化 人工智能 数学 估计理论 经济增长 物理 会计 进化生物学 业务 生物 经济 功率(物理) 量子力学
作者
Xia Jiang,Zhenzhou Lü
出处
期刊:Structural Safety [Elsevier BV]
卷期号:104: 102362-102362 被引量:12
标识
DOI:10.1016/j.strusafe.2023.102362
摘要

Bayesian updating is a powerful tool to reassess and calibrate models and their reliability as new observations emerge, and the Bayesian updating with structural reliability method (BUS) is an efficient approach that reformulates it as a structural reliability problem. However, the efficiency and accuracy of BUS depend on a constant c determined by the maximum of likelihood function. To efficiently complete Bayesian updating with new observations related to implicit performance function, a method that combines adaptive Kriging with Bayesian updating is proposed. The proposed method involves three stages. Firstly, an innovatively advanced expected improvement (AEI) learning function is proposed to train the Kriging model of the likelihood function for estimating c, in which the convergence criterion and the strategy of selecting new training point guarantee the accuracy and efficiency of estimating c. Secondly, a new learning function based on expectation and variance of contribution uncertainty function (EVCUF) is proposed to adaptively train the Kriging model of the performance function constructed in BUS to extract posterior samples and complete Bayesian updating of model. By simultaneously taking the expectation and variance of the contribution of the candidate sample to improving accuracy of the Kriging model into consideration, the EVCUF learning function ensures the robust and efficient convergence of the Kriging model. Finally, based on the training points of the previous two stages, the traditional U learning function is employed to subsequentially update Kriging model of the performance function for classifying posterior samples and completing Bayesian updating of reliability. Additionally, a reduction strategy of the candidate sample pool is proposed to improve the efficiency of the proposed method. After demonstrating the basic principle and advantage of the proposed method, three examples are introduced to verify the efficiency and accuracy of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MR_Z发布了新的文献求助10
刚刚
深情安青应助太阳采纳,获得10
刚刚
wwwddk完成签到,获得积分20
刚刚
zsy完成签到,获得积分10
刚刚
df完成签到 ,获得积分10
1秒前
布鲁布鲁完成签到,获得积分10
1秒前
科研通AI6应助阔达的梦寒采纳,获得10
3秒前
3秒前
科研通AI6应助魏猛采纳,获得10
3秒前
3秒前
3秒前
lllll完成签到,获得积分10
3秒前
山野发布了新的文献求助20
3秒前
巾帼完成签到,获得积分10
4秒前
诚心巧凡发布了新的文献求助10
4秒前
失眠万仇发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
小羊要加油完成签到 ,获得积分10
6秒前
过段时间完成签到,获得积分10
7秒前
adaigl发布了新的文献求助10
7秒前
活力秋天发布了新的文献求助10
7秒前
Sally完成签到,获得积分10
7秒前
汉堡包应助丸子采纳,获得10
7秒前
liuyuaner1130完成签到,获得积分10
8秒前
小家伙发布了新的文献求助10
8秒前
8秒前
爱笑寒凝完成签到,获得积分20
8秒前
布鲁布鲁发布了新的文献求助10
8秒前
承诺信守完成签到,获得积分10
8秒前
Abby发布了新的文献求助10
9秒前
10秒前
浮游应助LZL采纳,获得10
10秒前
10秒前
汉堡包应助失眠万仇采纳,获得10
10秒前
量子星尘发布了新的文献求助20
10秒前
11秒前
bibi完成签到 ,获得积分10
11秒前
春K应助47采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
Higher taxa of Basidiomycetes 300
Ricci Solitons in Dimensions 4 and Higher 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4688966
求助须知:如何正确求助?哪些是违规求助? 4061611
关于积分的说明 12557700
捐赠科研通 3759039
什么是DOI,文献DOI怎么找? 2075995
邀请新用户注册赠送积分活动 1104683
科研通“疑难数据库(出版商)”最低求助积分说明 983741