Interacting-Enhancing Feature Transformer for Cross-Modal Remote-Sensing Image and Text Retrieval

计算机科学 特征(语言学) 人工智能 卷积神经网络 嵌入 块(置换群论) 特征向量 特征学习 利用 情态动词 模式识别(心理学) 图像检索 计算机视觉 深度学习 图像(数学) 语言学 计算机安全 哲学 数学 化学 高分子化学 几何学
作者
Xu Tang,Yijing Wang,Jingjing Ma,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:25
标识
DOI:10.1109/tgrs.2023.3280546
摘要

Cross-modal remote sensing image-text retrieval (CMRSITR) is a challenging topic in the remote sensing (RS) community. It has gained growing attention because it can be flexibly used in many practical applications. In the current deep era, with the help of deep convolutional neural networks (DCNNs), many successful CMRSITR methods have been proposed. Most of them first learn valuable features from RS images and texts respectively. Then, the obtained visual and textual features are mapped into a common space for the final retrieval. The above operations are feasible, however, two difficulties are still to be solved. One is that the semantics within the visual and textual features are misaligned due to the independent learning manner. The other one is that the deep links between RS images and texts cannot be fully explored by simple common space mapping. To overcome the above challenges, we propose a new model named interacting-enhancing feature transformer (IEFT) for CMRSITR, which regards the RS images and texts as a whole. First, a simple feature embedding module (FEM) is developed to map images and texts into the visual and textual feature spaces. Second, an information interacting-enhancing module (IIEM) is designed to simultaneously model the inner relationships between RS images and texts and enhance the visual features. IIEM consists of three feature interacting-enhancing (FIE) blocks, each of which contains an inter-modality relationship interacting (IMRI) sub-block and a visual feature enhancing (VFE) sub-block. The duty of IMRI is to exploit the hidden relations between cross-modal data, while the responsibility of VFE is to improve the visual features. By combining them, semantic bias can be mitigated, and the complex contents of RS images can be studied. Finally, the retrieval module (RM) is constructed to generate the matching scores for deciding the search results. Extensive experiments are conducted on four public RS data sets. The positive results demonstrate that our IEFT can achieve superior retrieval performance compared with many existing methods. Our source codes are available at https://github.com/TangXu-Group/Cross-modal-remote-sensing-image-and-text-retrieval-models/tree/main/IEFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dan完成签到,获得积分10
1秒前
赵十一完成签到,获得积分10
2秒前
沃若完成签到 ,获得积分10
3秒前
得唔闻完成签到 ,获得积分10
3秒前
yh完成签到,获得积分10
3秒前
风中冰香应助时来运转采纳,获得10
4秒前
wnche完成签到,获得积分10
4秒前
orixero应助健忘的魔女采纳,获得10
4秒前
安静的猴子完成签到 ,获得积分20
4秒前
浮游应助hou采纳,获得10
5秒前
zlh0完成签到,获得积分10
5秒前
英俊的铭应助大方研究生采纳,获得10
5秒前
yc完成签到,获得积分10
5秒前
YT完成签到 ,获得积分10
6秒前
刘泗青应助7890733采纳,获得10
8秒前
orixero应助7890733采纳,获得10
8秒前
吕敬瑶完成签到,获得积分10
8秒前
溜了溜了完成签到,获得积分10
9秒前
青牛完成签到,获得积分10
10秒前
10秒前
暴躁的眼神完成签到,获得积分10
11秒前
舒琪完成签到,获得积分10
12秒前
稻草人完成签到 ,获得积分10
12秒前
铁马冰河入梦来完成签到 ,获得积分10
14秒前
思源应助hchen采纳,获得10
14秒前
15秒前
Ally发布了新的文献求助10
17秒前
韩老魔完成签到,获得积分10
17秒前
18秒前
小怪完成签到,获得积分10
19秒前
19秒前
阿烨完成签到,获得积分10
21秒前
花南星完成签到,获得积分10
22秒前
打打应助倪佳采纳,获得10
22秒前
corleeang完成签到 ,获得积分10
22秒前
Ava应助整齐的茗茗采纳,获得10
23秒前
崔梦楠完成签到 ,获得积分10
23秒前
23秒前
薇子完成签到,获得积分10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213020
求助须知:如何正确求助?哪些是违规求助? 4388978
关于积分的说明 13665491
捐赠科研通 4249811
什么是DOI,文献DOI怎么找? 2331792
邀请新用户注册赠送积分活动 1329520
关于科研通互助平台的介绍 1283054