CURE: A Hierarchical Framework for Multi-Robot Autonomous Exploration Inspired by Centroids of Unknown Regions

质心 沃罗诺图 机器人 计算机科学 人工智能 数据挖掘 数学 几何学
作者
Qingchen Bi,Xuebo Zhang,Jian Wen,Zhangchao Pan,Shiyong Zhang,Runhua Wang,Jing Yuan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3773-3786 被引量:18
标识
DOI:10.1109/tase.2023.3285300
摘要

In this paper, a novel multi-robot autonomous exploration approach CURE is proposed based on dynamic Voronoi diagrams and centroids of unknown connected regions. Compared with existing approaches, the novelty of this work is twofold: 1) Dynamic Voronoi diagram is used for partition of the space being explored to improve the efficiency of multi-robot exploration, and then a new parameter-insensitive utility function is elaborately designed to evaluate the information of centroids, which helps guide the robot to explore unknown regions. 2) A hierarchical framework consisting of global and local exploration windows for detecting centroids is designed, wherein the global exploration window is activated to find centroids to guide the robot exploration when there are no centroids in any one local exploration window. We validate the feasibility and exploration efficiency of the proposed approach in various complex simulation scenarios and challenging real-world tasks. All test results show that the exploration time consumption and path cost are reduced by up to 50.7% and 34.4%, respectively, compared with an advanced RRT-based multi-robot exploration approach. (Supplementary video link: https://youtu.be/P5jXKlGQOec) Note to Practitioners —This paper is motivated by the efficient multi-robot autonomous exploration problem. In some applications such as target search and disaster rescue, the information about the environment is totally unknown to the robots, and thus they are required to explore unknown environments autonomously. In this case, it is necessary to improve the efficiency of multi-robot exploration due to the time limitation of the task and the battery capacity. In this paper, a hierarchical framework is proposed to improve the efficiency of multi-robot autonomous exploration. Each robot only needs to explore the Voronoi partition it is responsible for and is guided to the unknown region by the centroid detected in the global and local exploration windows. Overall, the proposed approach can dramatically reduce the exploration time and path cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
刚刚
石馨怡完成签到 ,获得积分10
1秒前
1秒前
九局下半发布了新的文献求助10
1秒前
2秒前
cyy发布了新的文献求助10
2秒前
3秒前
Nancy完成签到 ,获得积分10
3秒前
吴家豪发布了新的文献求助10
3秒前
爱自己就好完成签到,获得积分10
3秒前
顾矜应助李雩采纳,获得10
4秒前
中西西完成签到 ,获得积分10
4秒前
善良的半仙完成签到,获得积分10
5秒前
WAHAHAoo完成签到,获得积分10
5秒前
恋如雪止完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
ddrose发布了新的文献求助100
6秒前
轻松的学习学习学完成签到,获得积分20
7秒前
7秒前
李爱国应助陶月慧采纳,获得10
9秒前
小马完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助尹不愁采纳,获得10
10秒前
11秒前
木木发布了新的文献求助10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
田様应助科研通管家采纳,获得30
12秒前
小水应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Li应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978255
求助须知:如何正确求助?哪些是违规求助? 4231265
关于积分的说明 13178938
捐赠科研通 4022032
什么是DOI,文献DOI怎么找? 2200547
邀请新用户注册赠送积分活动 1213008
关于科研通互助平台的介绍 1129272