An Improved Generic Hybrid Prognostic Method for RUL Prediction Based on PF-LSTM Learning

预言 颗粒过滤器 计算机科学 聚类分析 人工智能 预测性维护 机器学习 人工神经网络 可靠性工程 数据挖掘 工程类 卡尔曼滤波器
作者
Ke Xue,Jun Yang,Ming Yang,Dagui Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-21 被引量:31
标识
DOI:10.1109/tim.2023.3251391
摘要

Accurate estimation and prediction of the state-of-health (SOH) and remaining useful life (RUL) are fundamental to optimal maintenance strategies formulation for prognostics and health management (PHM) of degraded equipment. However, the performance assessment of health state prognostics and RUL prediction is strongly dependent on the errors and uncertainties in physical measurements, and heterogeneous degradation of equipment in time-varying operating conditions. The objective of this article is to provide a hybrid prognostic framework that integrates a two-phase clustering scheme and a particle filter (PF)-long short-term memory (LSTM) learning algorithm based on PF and LSTM networks for dynamic classification of SOH and long-term RUL prediction in the absence of future observations. The proposed generic hybrid PF-LSTM prognostic approach is demonstrated and compared with other adaptive learning and machine learning methods such as unscented particle filter (UPF) and radial basis function network (RBFN) on the degradation modeling and RUL prediction for lithium-ion batteries. The comparison results show that robust prediction performance can be obtained by the hybrid PF-LSTM prognostic approach with the accurate characterization of equipment degradation states based on the integrated subtractive-fuzzy clustering analysis. The more accuracy on prognostic estimations in probability density function (PDF) of prior and posterior distributions of battery capacity and RUL that are achieved by particle filtering can gain extensive insights to predictive maintenance action guide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的乐巧完成签到,获得积分10
刚刚
1秒前
小石头完成签到,获得积分10
1秒前
科研通AI5应助复杂的梦曼采纳,获得10
1秒前
阿飞发布了新的文献求助10
1秒前
隐形的翅膀完成签到 ,获得积分10
2秒前
西瓜汁发布了新的文献求助10
2秒前
2秒前
zzzz发布了新的文献求助10
3秒前
jimi完成签到 ,获得积分10
3秒前
Jing发布了新的文献求助10
4秒前
小石头发布了新的文献求助10
4秒前
4秒前
5秒前
思源应助诗轩采纳,获得10
6秒前
6秒前
6秒前
7秒前
香蕉觅云应助一一采纳,获得10
8秒前
刘凯鑫完成签到,获得积分20
9秒前
动漫大师发布了新的文献求助10
9秒前
9秒前
10秒前
情怀应助qly采纳,获得10
11秒前
11秒前
帅气老虎完成签到,获得积分10
11秒前
Star应助HaoHao04采纳,获得10
12秒前
12秒前
12秒前
HaroldNguyen完成签到,获得积分10
13秒前
星辰大海应助徐徐采纳,获得10
13秒前
Ddddd发布了新的文献求助10
13秒前
13秒前
SWEETYXY应助ceci采纳,获得10
13秒前
14秒前
ymc的dad完成签到,获得积分10
14秒前
打打应助ttt采纳,获得30
14秒前
15秒前
16秒前
黑香菱发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807134
求助须知:如何正确求助?哪些是违规求助? 3351915
关于积分的说明 10356503
捐赠科研通 3067918
什么是DOI,文献DOI怎么找? 1684783
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765787