免疫学
医学
Ⅰ型干扰素
错义突变
车站2
霉酚酸酯
基因
STAT1
干扰素
癌症研究
突变
遗传学
生物
内科学
STAT蛋白
移植
车站3
作者
Martina Rossano,Emilio Amleto Conti,Paola Bocca,Stefano Volpi,Antonio Mastrangelo,Riccardo Cavalli,Marco Gattorno,Francesca Minoia,Giovanni Filocamo
标识
DOI:10.3389/fimmu.2023.1288675
摘要
Juvenile systemic lupus erythematosus (jSLE) is a complex inflammatory autoimmune disorder. In the last decades, genetic factors and activation pathways have been increasingly studied to understand their potential pathogenetic role better. Genetic and transcriptional abnormalities directly involved in the type I interferon (IFN) signaling cascade have been identified through family-based and genome-wide association studies. IFNs trigger signaling pathways that initiate gene transcription of IFN-stimulated genes through the activation of JAK1, TYK2, STAT1, and STAT2. Thus, the use of therapies that target the IFN pathway would represent a formidable advance in SLE. It is well known that JAK inhibitors have real potential for the treatment of rheumatic diseases, but their efficacy in the treatment of SLE remains to be elucidated. We report the case of a 13-year-old girl affected by jSLE, carrying a novel heterozygous missense variant on Three prime Repair EXonuclease 1 ( TREX1 ), successfully treated with baricitinib on top of mofetil mycophenolate. The TREX1 gene plays an important role in DNA damage repair, and its mutations have been associated with an overproduction of type 1 interferon. This report underlines the role of translational research in identifying potential pathogenetic pathways in rare diseases to optimize treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI