光催化
还原(数学)
环境化学
酶
化学
环境科学
材料科学
生物化学
数学
催化作用
几何学
作者
Henrik Terholsen,H Huerta-Zerón,Christina Möller,Henrik Junge,Matthias Beller,Uwe T. Bornscheuer
标识
DOI:10.1002/anie.202319313
摘要
Abstract Novel concepts to utilize carbon dioxide are required to reach a circular carbon economy and minimize environmental issues. To achieve these goals, photo‐, electro‐, thermal‐, and biocatalysis are key tools to realize this, preferentially in aqueous solutions. Nevertheless, catalytic systems that operate efficiently in water are scarce. Here, we present a general strategy for the identification of enzymes suitable for CO 2 reduction based on structural analysis for potential carbon dioxide binding sites and subsequent mutations. We discovered that the phenolic acid decarboxylase from Bacillus subtilis (BsPAD) promotes the aqueous photocatalytic CO 2 reduction selectively to carbon monoxide in the presence of a ruthenium photosensitizer and sodium ascorbate. With engineered variants of BsPAD, TONs of up to 978 and selectivities of up to 93 % (favoring the desired CO over H 2 generation) were achieved. Mutating the active site region of BsPAD further improved turnover numbers for CO generation. This also revealed that electron transfer is rate‐limiting and occurs via multistep tunneling. The generality of this approach was proven by using eight other enzymes, all showing the desired activity underlining that a range of proteins is capable of photocatalytic CO 2 reduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI