Machine learning algorithms in sepsis

败血症 计算机科学 机器学习 人工智能 医学 内科学
作者
Luisa Agnello,Matteo Vidali,Andrea Padoan,Riccardo Lucis,Alessio Mancini,Roberto Guerranti,Mario Plebani,Marcello Ciaccio,Anna Carobene
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:553: 117738-117738 被引量:7
标识
DOI:10.1016/j.cca.2023.117738
摘要

Sepsis remains a significant global health challenge due to its high mortality and morbidity, compounded by the difficulty of early detection given its variable clinical manifestations. The integration of machine learning (ML) into laboratory medicine for timely sepsis identification and outcome forecasting is an emerging field of interest. This comprehensive review assesses the current body of research on ML applications for sepsis within the realm of laboratory diagnostics, detailing both their strengths and shortcomings. An extensive literature search was performed by two independent investigators across PubMed and Scopus databases, employing the keywords "Sepsis," "Machine Learning," and "Laboratory" without publication date limitations, culminating in January 2023. Each selected study was meticulously evaluated for various aspects, including its design, intent (diagnostic or prognostic), clinical environment, demographics, sepsis criteria, data gathering period, and the scope and nature of features, in addition to the ML methodologies and their validation procedures. Out of 135 articles reviewed, 39 fulfilled the criteria for inclusion. Among these, the majority (30 studies) were focused on devising ML algorithms for diagnosis, fewer (8 studies) on prognosis, and one study addressed both aspects. The dissemination of these studies across an array of journals reflects the interdisciplinary engagement in the development of ML algorithms for sepsis. This analysis highlights the promising role of ML in the early diagnosis of sepsis while drawing attention to the need for uniformity in validating models and defining features, crucial steps for ensuring the reliability and practicality of ML in clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助阔达的柠檬采纳,获得10
2秒前
mili完成签到,获得积分20
3秒前
wyq发布了新的文献求助10
3秒前
简单澜发布了新的文献求助10
4秒前
MchemG应助如意的书南采纳,获得10
10秒前
天天快乐应助如意的书南采纳,获得10
10秒前
爆米花应助简单澜采纳,获得10
12秒前
12秒前
隐形曼青应助康谨采纳,获得10
13秒前
16秒前
卡他发布了新的文献求助10
16秒前
科研通AI2S应助青雉采纳,获得10
19秒前
20秒前
mili发布了新的文献求助10
22秒前
汉堡包应助虚幻花卷采纳,获得10
24秒前
Pursue完成签到,获得积分10
24秒前
Jasper应助今夜无人入眠采纳,获得10
25秒前
26秒前
Fiveoreo发布了新的文献求助10
28秒前
宋丽娟发布了新的文献求助10
28秒前
28秒前
29秒前
乌冬面发布了新的文献求助10
29秒前
31秒前
平常安完成签到,获得积分10
32秒前
无名完成签到,获得积分10
36秒前
搜集达人应助夏夏周采纳,获得10
36秒前
烧烤店在逃花肉完成签到,获得积分10
36秒前
唐飒应助文件撤销了驳回
37秒前
顾矜应助yn采纳,获得10
43秒前
崔志玥完成签到 ,获得积分10
45秒前
JankinWen完成签到 ,获得积分10
46秒前
依楼发布了新的文献求助10
47秒前
49秒前
研友_VZG7GZ应助山山而川采纳,获得10
50秒前
斯文败类应助高桂花采纳,获得10
50秒前
科目三应助小米儿丫丫采纳,获得10
54秒前
54秒前
爆米花应助JJQ采纳,获得10
54秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634