已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Platform dynamic game and operation of hybrid Bike-Sharing systems based on reinforcement learning

动态定价 计算机科学 强化学习 共享经济 马尔可夫决策过程 利润(经济学) 重新安置 运筹学 马尔可夫过程 业务 微观经济学 经济 营销 工程类 人工智能 程序设计语言 万维网 统计 数学
作者
Ziyi Shi,Meng Xu,Yancun Song,Zheng Zhu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:181: 103374-103374 被引量:8
标识
DOI:10.1016/j.tre.2023.103374
摘要

The advent of electric bikes, or ebikes, has significantly enhanced competitiveness of bike-sharing systems, providing benefits to both riders (comfort during uphill and long-distance rides), platforms (more profit), and the environment. Operating such a hybrid bike-sharing system, i.e., with both bikes and ebikes, in a competitive multi-platform market, can be challenging due to the complex and unpredictable interplay among heterogeneous market participants, which becomes more pronounced with the ebike varying battery, and dynamic demand. Most related research is predicated on the assumption of a monopoly market, which is not always the case: in worldwide capital-oriented markets, many firms will quickly imitate and join in rapidly developing fields for profits. Thus, this paper addresses platforms' hybrid bike-sharing system operation problem with time-varying ebike pricing and rebalancing strategy in consideration of competition. We consider two docked hybrid bike-sharing platforms with charging stations at the site. Platforms utilize trucks for their own rebalancing operation including bike, ebike and mixed bike/ebike relocation tasks. We combine the Markov decision process (MDP) model with game theory, and establish the dual-platform MDP framework in which one mainstream platform and one competing platform optimize their profits by dynamic pricing and bike/ebike rebalancing based on highly dynamic and stochastic demand. Users' choice is described by a modified nested logit model and the endogenous demand is generated. We develop the tailored double dueling deep Q-network for solving dynamic gaming. A series of experiments are conducted based on the real-world dataset in Shenzhen and several strategy combinations are compared. The results show the win–win situation where both platforms improve profits with a higher market ratio and demonstrate how to introduce and operate ebikes in the system by analyzing detailed strategies in different games.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的凡梦完成签到 ,获得积分10
刚刚
347u完成签到 ,获得积分10
3秒前
3秒前
尊敬兔子完成签到,获得积分10
3秒前
chenu完成签到 ,获得积分10
4秒前
酷波er应助app采纳,获得10
4秒前
招水若离完成签到,获得积分0
6秒前
9秒前
健壮的花瓣完成签到 ,获得积分10
10秒前
haha发布了新的文献求助30
12秒前
16秒前
可不可以完成签到 ,获得积分10
18秒前
zyjsunye完成签到 ,获得积分10
21秒前
22秒前
小鱼完成签到 ,获得积分10
23秒前
FFFFF完成签到 ,获得积分0
26秒前
山东老铁完成签到 ,获得积分10
30秒前
30秒前
33秒前
浮沉发布了新的文献求助10
34秒前
As故完成签到,获得积分10
40秒前
滴嘟滴嘟完成签到 ,获得积分10
43秒前
受伤冰菱完成签到,获得积分10
48秒前
57秒前
58秒前
乖乖给姐躺好完成签到,获得积分10
59秒前
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
xixi发布了新的文献求助10
1分钟前
TDY6关注了科研通微信公众号
1分钟前
1分钟前
简单完成签到 ,获得积分10
1分钟前
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
kgdzj完成签到,获得积分10
1分钟前
doublemeat发布了新的文献求助10
1分钟前
1分钟前
打打应助larychen采纳,获得10
1分钟前
橘子海完成签到 ,获得积分10
1分钟前
沈随便发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4813122
求助须知:如何正确求助?哪些是违规求助? 4125412
关于积分的说明 12765564
捐赠科研通 3862679
什么是DOI,文献DOI怎么找? 2126065
邀请新用户注册赠送积分活动 1147547
关于科研通互助平台的介绍 1041465