已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A regression approach for seismic first-break picking

计算机科学 人工神经网络 分割 人工智能 数据挖掘 模式识别(心理学)
作者
Huan Yuan,Sanyi Yuan,Jie Wu,Wenjing Sang,Yuhe Zhao
出处
期刊:Petroleum Science [Elsevier BV]
卷期号:21 (3): 1584-1596
标识
DOI:10.1016/j.petsci.2023.11.028
摘要

The picking efficiency of seismic first breaks (FBs) has been greatly accelerated by deep learning (DL) technology. However, the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio (SNR) situations. To address this issue, we propose a regression approach to pick FBs based on bidirectional long short-term memory (BiLSTM) neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region. We employ a regressive model that represents the relationships among the elevation of shots, offset and the elevation of receivers to their seismic traveltime to predict the unknown FBs, from common-shot gathers with sparsely distributed traces. Different from image segmentation methods which automatically extract image features and classify FBs from seismic data, the proposed method can learn the inner relationship between field geometry and FBs. In addition, the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution. The picking results of synthetic data shows that the proposed method has low dependence on label data, and can obtain reliable and similar predicted results using two types of label data with large differences. The picking results of 9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data. The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method. The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blessing发布了新的文献求助10
3秒前
iu1392发布了新的文献求助10
7秒前
eazin完成签到 ,获得积分10
11秒前
DZZ发布了新的文献求助10
12秒前
畅快的紫烟完成签到,获得积分10
12秒前
星弟完成签到 ,获得积分10
13秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
___淡完成签到 ,获得积分10
21秒前
孤独尔白应助wmwm采纳,获得10
24秒前
牙线棒棒哒完成签到 ,获得积分10
26秒前
26秒前
aixiaoming0503完成签到,获得积分10
32秒前
yls完成签到,获得积分10
32秒前
32秒前
lailai完成签到 ,获得积分10
34秒前
35秒前
pinklay完成签到 ,获得积分10
36秒前
pcr163应助白巧小丸子采纳,获得100
38秒前
学术之神庇佑的一完成签到,获得积分10
40秒前
LAN完成签到,获得积分10
42秒前
李健的小迷弟应助YanZhe采纳,获得10
57秒前
哇呀呀完成签到 ,获得积分10
59秒前
土豪的摩托完成签到 ,获得积分10
1分钟前
玺白白完成签到,获得积分10
1分钟前
1分钟前
李孟佯完成签到 ,获得积分10
1分钟前
汉堡包应助l绽l采纳,获得10
1分钟前
玺白白发布了新的文献求助10
1分钟前
缥缈飞鸟完成签到 ,获得积分10
1分钟前
踏实嚣完成签到 ,获得积分10
1分钟前
wz完成签到 ,获得积分10
1分钟前
WaitP应助白羽采纳,获得10
1分钟前
1分钟前
石莫言完成签到,获得积分10
1分钟前
1分钟前
赘婿应助肖福艳采纳,获得10
1分钟前
1分钟前
ZYY完成签到,获得积分10
1分钟前
石莫言发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798390
求助须知:如何正确求助?哪些是违规求助? 3343808
关于积分的说明 10317752
捐赠科研通 3060542
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296