A time-continuous land surface temperature (LST) data fusion approach based on deep learning with microwave remote sensing and high-density ground truth observations

遥感 环境科学 基本事实 气象学 深度学习 微波食品加热 传感器融合 计算机科学 地理 电信 机器学习
作者
Jiahao Han,Shibo Fang,Qianchuan Mi,Xinyu Wang,Yanru Yu,Zhuo Wen,Xiaofeng Peng
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:914: 169992-169992 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.169992
摘要

Land surface temperature (LST) is a crucial parameter in the circulation of water, exchange of land-atmosphere energy, and turbulence. Currently, most LST products rely heavily on thermal infrared remote sensing, which is susceptible to cloud and rain interference, leading to inferior temporal continuity. Microwave remote sensing has the advantage of being available "all-weather" due to strong penetration capability, which provides the possibility to simulate time-continuous LST data. In addition, the continuous increase in high-density station observations (>10,000 stations) provides reliable measured data for the remote sensing monitoring of LST in China. This study aims to adopt the "Earth big data" generated from high-density station observation and microwave remote sensing data to monitor LST based on deep learning (U-Net family) for the first time. Given the significant spatial and temporal variability of LST and its sensitivity to various factors according to radiation transmission equations, this study incorporated climatic, anthropogenic, geographical, and vegetation datasets to facilitate a multi-source data fusion approach for LST estimation. The results showed that the U-Net++ model with modified skip connections better minimized the semantic discrepancy between the feature maps of the encoder and decoder subnetworks for 0.1° daily LST mapping across China than the U-Net and U2-Net deep learning models. The accuracy of the LST simulation exhibited favorable outcomes in the spatial and temporal dimensions. The station density met the requirements of monitoring air-ground integration monitoring in China. Additionally, the temporal change in the simulation accuracy fluctuated in a W-shape owing to the limited simulation capability of deep learning in extreme scenarios. Anthropogenic factors had the largest influence on LST changes in China, followed by climate, geography, and vegetation. This study highlighted the application of deep learning in remote sensing monitoring against the background of "big data" and provided a scientific foundation for the response of climate change to human activities, ecological environmental protection, and sustainable social and economic development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bgeelyu发布了新的文献求助10
刚刚
桐桐应助犹豫绾绾采纳,获得10
1秒前
机灵道罡发布了新的文献求助10
1秒前
科研通AI2S应助survivaluu采纳,获得10
1秒前
小齐爱科研完成签到,获得积分10
2秒前
怡然芷蝶发布了新的文献求助10
2秒前
快来拾糖完成签到 ,获得积分10
2秒前
科研通AI5应助老疯智采纳,获得30
3秒前
3秒前
=.=发布了新的文献求助10
4秒前
lzq发布了新的文献求助10
4秒前
chen0815完成签到,获得积分20
4秒前
如意草丛发布了新的文献求助10
4秒前
5秒前
李爱国应助happy采纳,获得10
5秒前
科研通AI5应助酥酥鸡腿堡采纳,获得10
5秒前
5秒前
6秒前
迷路小丸子完成签到,获得积分10
6秒前
7秒前
7秒前
英姑应助chen0815采纳,获得10
7秒前
8秒前
8秒前
8秒前
万安安完成签到,获得积分10
9秒前
9秒前
乐乐完成签到,获得积分10
9秒前
10秒前
=.=完成签到,获得积分10
10秒前
盐湖所王裕民完成签到,获得积分10
10秒前
tong发布了新的文献求助10
11秒前
11秒前
万安安发布了新的文献求助10
12秒前
上官若男应助Young采纳,获得10
12秒前
12秒前
迷人的慕山完成签到,获得积分10
12秒前
机灵道罡完成签到,获得积分10
13秒前
希望天下0贩的0应助jjh采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621