Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners

期限(时间) 光伏系统 分解 基础(拓扑) 计算机科学 人工智能 数学 工程类 电气工程 化学 物理 数学分析 有机化学 量子力学
作者
Weihui Xu,Zhaoke Wang,Weishu Wang,Jian Zhao,Miaojia Wang,Qinbao Wang
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (4): 906-906 被引量:3
标识
DOI:10.3390/en17040906
摘要

Photovoltaic power generation prediction constitutes a significant research area within the realm of power system artificial intelligence. Accurate prediction of future photovoltaic output is imperative for the optimal dispatchment and secure operation of the power grid. This study introduces a photovoltaic prediction model, termed ICEEMDAN-Bagging-XGBoost, aimed at enhancing the accuracy of photovoltaic power generation predictions. In this paper, the original photovoltaic power data initially undergo decomposition utilizing the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) algorithm, with each intrinsic mode function (IMF) derived from this decomposition subsequently reconstructed into high-frequency, medium-frequency, and low-frequency components. Targeting the high-frequency and medium-frequency components of photovoltaic power, a limiting gradient boosting tree (XGBoost) is employed as the foundational learner in the Bagging parallel ensemble learning method, with the incorporation of a sparrow search algorithm (SSA) to refine the hyperparameters of XGBoost, thereby facilitating more nuanced tracking of the changes in the photovoltaic power’s high-frequency and medium-frequency components. Regarding the low-frequency components, XGBoost-Linear is utilized to enable rapid and precise prediction. In contrast with the conventional superposition reconstruction approach, this study employs XGBoost for the reconstruction of the prediction output’s high-frequency, intermediate-frequency, and low-frequency components. Ultimately, the efficacy of the proposed methodology is substantiated by the empirical operation data from a photovoltaic power station in Hebei Province, China. Relative to integrated and traditional single models, this paper’s model exhibits a markedly enhanced prediction accuracy, thereby offering greater applicational value in scenarios involving short-term photovoltaic power prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
淡淡的筝发布了新的文献求助10
6秒前
852应助迷途采纳,获得10
6秒前
zxer发布了新的文献求助10
7秒前
DE完成签到,获得积分10
7秒前
小鱼儿完成签到,获得积分10
9秒前
10秒前
汤汤完成签到 ,获得积分10
11秒前
平常的毛豆应助zxer采纳,获得10
11秒前
zhou完成签到,获得积分10
12秒前
einspringen发布了新的文献求助10
15秒前
happy完成签到 ,获得积分10
17秒前
lxl完成签到,获得积分10
18秒前
酷波er应助悦耳的乐松采纳,获得10
18秒前
淡淡的筝完成签到,获得积分10
20秒前
21秒前
23秒前
迷途发布了新的文献求助10
25秒前
25秒前
Jiao完成签到,获得积分10
26秒前
26秒前
卡皮巴拉yuan应助dzx采纳,获得10
26秒前
小费发布了新的文献求助20
28秒前
英姑应助weifeng采纳,获得10
28秒前
害羞的网络完成签到,获得积分10
29秒前
ranjeah完成签到 ,获得积分10
29秒前
30秒前
April发布了新的文献求助10
33秒前
乐乐应助小罗采纳,获得10
33秒前
李健应助二狗儿采纳,获得10
35秒前
傲娇问晴完成签到,获得积分20
37秒前
chayue完成签到,获得积分10
38秒前
科目三应助max采纳,获得10
40秒前
40秒前
41秒前
41秒前
华仔应助einspringen采纳,获得10
41秒前
纯真皮卡丘完成签到 ,获得积分10
43秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805231
求助须知:如何正确求助?哪些是违规求助? 3350217
关于积分的说明 10347937
捐赠科研通 3066112
什么是DOI,文献DOI怎么找? 1683536
邀请新用户注册赠送积分活动 809047
科研通“疑难数据库(出版商)”最低求助积分说明 765205