An explainable and robust motion planning and control approach for autonomous vehicle on-ramping merging task using deep reinforcement learning

强化学习 计算机科学 稳健性(进化) 时间范围 背景(考古学) 运动规划 人工智能 人工神经网络 数学优化 机器人 数学 生物化学 生物 基因 古生物学 化学
作者
Bo Hu,Lei Jiang,Sunan Zhang,Qiang Wang
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (3): 6488-6496 被引量:5
标识
DOI:10.1109/tte.2023.3347278
摘要

Reinforcement learning (RL) has the capability to discover optimal interactions with the surrounding environment, with the advantage that nearly all required computations can be performed offline. Nevertheless, the lack of explainability for RL-based solutions may prevent their large-scale application in industrial autonomous vehicle tasks. Furthermore, the RL method tends to be unsafe and brittle to scenarios not encountered in training. Conversely, the optimization-based method offers a substantial level of explainability, and through the explicit inclusion of safety constraints, it can guarantee the system's safety. In this context, building upon RL framework, a fusion algorithm that combines the advantage of the RL-based scheme and optimization-based scheme is proposed. Specifically, unlike traditional RL-based solutions which directly executes from perception to control using only neural network maps, this work introduces a mechanism of uncertainty-aware interval prediction to compute the set of states that can be reached over the planning time horizon. On this basis, a robust control framework is presented, which guarantees system safety while considering the worst-case performance scenarios. To validate the proposed algorithm, the task of an autonomous vehicle merging on to a highway from an on-ramp is simulated in SUMO. The results show that the proposed motion planning and control method combines the advantages of RL and optimization-based methods and achieves balanced performance in smoothness, computational efficiency, explainability and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严明发布了新的文献求助10
1秒前
乐乐应助vchen0621采纳,获得10
2秒前
qianqianwei发布了新的文献求助10
3秒前
jinan发布了新的文献求助10
3秒前
bkagyin应助卷卷采纳,获得10
3秒前
4秒前
5秒前
眉洛发布了新的文献求助10
5秒前
7秒前
Fiona完成签到,获得积分10
7秒前
李健应助bo采纳,获得10
10秒前
10秒前
浮游应助123qwe采纳,获得10
11秒前
俭朴蜜蜂发布了新的文献求助10
13秒前
超帅的海蓝完成签到,获得积分10
16秒前
俏皮的巨人完成签到,获得积分20
18秒前
18秒前
18秒前
19秒前
20秒前
00完成签到,获得积分10
20秒前
xgx984发布了新的文献求助10
20秒前
年把月拥有完成签到,获得积分20
21秒前
23秒前
23秒前
momo完成签到,获得积分10
25秒前
严明发布了新的文献求助10
25秒前
hhh完成签到 ,获得积分20
25秒前
姚驰发布了新的文献求助10
25秒前
26秒前
26秒前
研友_VZG7GZ应助嘟嘟嘟采纳,获得10
27秒前
FashionBoy应助xiaoshuwang采纳,获得10
27秒前
momo发布了新的文献求助10
27秒前
qianqianwei完成签到,获得积分10
28秒前
在水一方应助钱砖家采纳,获得10
29秒前
轻松怜菡完成签到,获得积分20
29秒前
30秒前
30秒前
浮游应助Fiona采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899127
求助须知:如何正确求助?哪些是违规求助? 4179490
关于积分的说明 12975214
捐赠科研通 3943544
什么是DOI,文献DOI怎么找? 2163400
邀请新用户注册赠送积分活动 1181711
关于科研通互助平台的介绍 1087387