Prediction of 4D stress field evolution around additive manufacturing-induced porosity through progressive deep-learning frameworks

多孔性 领域(数学) 深度学习 压力(语言学) 材料科学 应力场 人工智能 计算机科学 工程类 复合材料 结构工程 数学 有限元法 语言学 哲学 纯数学
作者
Mohammad Rezasefat,James D. Hogan
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (1): 015038-015038 被引量:9
标识
DOI:10.1088/2632-2153/ad290c
摘要

Abstract This study investigates the application of machine learning models to predict time-evolving stress fields in complex three-dimensional structures trained with full-scale finite element simulation data. Two novel architectures, the multi-decoder CNN (MUDE-CNN) and the multiple encoder–decoder model with transfer learning (MTED-TL), were introduced to address the challenge of predicting the progressive and spatial evolutional of stress distributions around defects. The MUDE-CNN leveraged a shared encoder for simultaneous feature extraction and employed multiple decoders for distinct time frame predictions, while MTED-TL progressively transferred knowledge from one encoder–decoder block to another, thereby enhancing prediction accuracy through transfer learning. These models were evaluated to assess their accuracy, with a particular focus on predicting temporal stress fields around an additive manufacturing (AM)-induced isolated pore, as understanding such defects is crucial for assessing mechanical properties and structural integrity in materials and components fabricated via AM. The temporal model evaluation demonstrated MTED-TL’s consistent superiority over MUDE-CNN, owing to transfer learning’s advantageous initialization of weights and smooth loss curves. Furthermore, an autoregressive training framework was introduced to improve temporal predictions, consistently outperforming both MUDE-CNN and MTED-TL. By accurately predicting temporal stress fields around AM-induced defects, these models can enable real-time monitoring and proactive defect mitigation during the fabrication process. This capability ensures enhanced component quality and enhances the overall reliability of additively manufactured parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助知性的采珊采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
Jere发布了新的文献求助20
2秒前
shhoing应助cong666采纳,获得10
2秒前
4秒前
小呆呆完成签到 ,获得积分10
5秒前
hahahah完成签到,获得积分10
6秒前
6秒前
Kail完成签到,获得积分10
8秒前
8秒前
李翎发布了新的文献求助10
9秒前
我是老大应助王娇采纳,获得10
10秒前
10秒前
10秒前
yyanxuemin919发布了新的文献求助10
10秒前
palace完成签到,获得积分10
10秒前
太吾墨完成签到,获得积分0
11秒前
liguobs发布了新的文献求助10
11秒前
12秒前
科研通AI6应助M.采纳,获得10
12秒前
12秒前
高贵的煎饼完成签到 ,获得积分10
13秒前
酷波er应助Ted采纳,获得10
13秒前
聪慧板凳完成签到,获得积分10
13秒前
哇咔咔发布了新的文献求助10
13秒前
14秒前
体贴冰之发布了新的文献求助10
14秒前
小顾完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
柏小霜发布了新的文献求助10
16秒前
乐橙发布了新的文献求助10
16秒前
hujiaodawang发布了新的文献求助10
16秒前
DONNYTIO发布了新的文献求助10
17秒前
lhhhh完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556899
求助须知:如何正确求助?哪些是违规求助? 4641934
关于积分的说明 14666491
捐赠科研通 4583546
什么是DOI,文献DOI怎么找? 2514242
邀请新用户注册赠送积分活动 1488653
关于科研通互助平台的介绍 1459298