Revealing the Denoising Principle of Zero-Shot N2N-Based Algorithm from 1D Spectrum to 2D Image

降噪 算法 过度拟合 正规化(语言学) 人工智能 噪音(视频) 计算机科学 散粒噪声 全变差去噪 图像(数学) 模式识别(心理学) 人工神经网络 电信 探测器
作者
Siheng Luo,Si‐Qi Pan,Ganyu Chen,Yi Xie,Bin Ren,Guokun Liu,Zhong‐Qun Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (10): 4086-4092 被引量:4
标识
DOI:10.1021/acs.analchem.3c04608
摘要

Denoising is a necessary step in image analysis to extract weak signals, especially those hardly identified by the naked eye. Unlike the data-driven deep-learning denoising algorithms relying on a clean image as the reference, Noise2Noise (N2N) was able to denoise the noise image, providing sufficiently noise images with the same subject but randomly distributed noise. Further, by introducing data augmentation to create a big data set and regularization to prevent model overfitting, zero-shot N2N-based denoising was proposed in which only a single noisy image was needed. Although various N2N-based denoising algorithms have been developed with high performance, their complicated black box operation prevented the lightweight. Therefore, to reveal the working function of the zero-shot N2N-based algorithm, we proposed a lightweight Peak2Peak algorithm (P2P) and qualitatively and quantitatively analyzed its denoising behavior on the 1D spectrum and 2D image. We found that the high-performance denoising originates from the trade-off balance between the loss function and regularization in the denoising module, where regularization is the switch of denoising. Meanwhile, the signal extraction is mainly from the self-supervised characteristic learning in the data augmentation module. Further, the lightweight P2P improved the denoising speed by at least ten times but with little performance loss, compared with that of the current N2N-based algorithms. In general, the visualization of P2P provides a reference for revealing the working function of zero-shot N2N-based algorithms, which would pave the way for the application of these algorithms toward real-time (in situ, in vivo, and operando) research improving both temporal and spatial resolutions. The P2P is open-source at https://github.com/3331822w/Peak2Peakand will be accessible online access at https://ramancloud.xmu.edu.cn/tutorial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助马桶盖盖子采纳,获得10
1秒前
心心发布了新的文献求助10
1秒前
3秒前
5秒前
JTB完成签到,获得积分10
5秒前
小h完成签到,获得积分10
5秒前
knight7m完成签到 ,获得积分10
8秒前
留胡子的之云完成签到,获得积分10
9秒前
研友_8Y2M0L发布了新的文献求助10
9秒前
wanci应助繁星采纳,获得10
10秒前
relink完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
糊涂的不尤完成签到 ,获得积分10
12秒前
12秒前
李健应助暗月皇采纳,获得10
14秒前
上官若男应助英勇雅琴采纳,获得10
14秒前
景泰蓝完成签到,获得积分10
17秒前
研友_8Y2M0L完成签到,获得积分10
17秒前
XXGG完成签到 ,获得积分10
18秒前
19秒前
亲亲完成签到,获得积分10
20秒前
繁星完成签到,获得积分20
20秒前
大树完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助研友_8Y2M0L采纳,获得10
21秒前
21秒前
23秒前
秀丽笑容完成签到,获得积分10
25秒前
吴大打完成签到,获得积分10
27秒前
iNk应助jiangyao采纳,获得10
27秒前
翻斗花园612完成签到,获得积分10
28秒前
樊尔风发布了新的文献求助10
28秒前
29秒前
die完成签到 ,获得积分10
31秒前
wys完成签到 ,获得积分10
34秒前
吴大打发布了新的文献求助10
35秒前
36秒前
37秒前
樊尔风发布了新的文献求助10
38秒前
哈哈哈哈完成签到,获得积分10
38秒前
孙雪冰完成签到,获得积分20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751