US-based Sequential Algorithm Integrating an AI Model for Advanced Liver Fibrosis Screening

医学 肝纤维化 领域(数学) 算法 纤维化 人工智能 病理 数学 计算机科学 纯数学
作者
Li‐Da Chen,Ze-Rong Huang,Hong Yang,Mei-Qing Cheng,Shunro Matsumoto,Xiao-Zhou Lu,Ming‐De Li,Rui-Fang Lu,Dan-Ni He,Peng Lin,Qiuping Ma,Hui Huang,Si‐Min Ruan,Weiping Ke,Bing Liao,Bihui Zhong,Jie Ren,Ming‐De Lu,Xiaoyan Xie,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:7
标识
DOI:10.1148/radiol.231461
摘要

Background Noninvasive tests can be used to screen patients with chronic liver disease for advanced liver fibrosis; however, the use of single tests may not be adequate. Purpose To construct sequential clinical algorithms that include a US deep learning (DL) model and compare their ability to predict advanced liver fibrosis with that of other noninvasive tests. Materials and Methods This retrospective study included adult patients with a history of chronic liver disease or unexplained abnormal liver function test results who underwent B-mode US of the liver between January 2014 and September 2022 at three health care facilities. A US-based DL network (FIB-Net) was trained on US images to predict whether the shear-wave elastography (SWE) value was 8.7 kPa or higher, indicative of advanced fibrosis. In the internal and external test sets, a two-step algorithm (Two-step#1) using the Fibrosis-4 Index (FIB-4) followed by FIB-Net and a three-step algorithm (Three-step#1) using FIB-4 followed by FIB-Net and SWE were used to simulate screening scenarios where liver stiffness measurements were not or were available, respectively. Measures of diagnostic accuracy were calculated using liver biopsy as the reference standard and compared between FIB-4, SWE, FIB-Net, and European Association for the Study of the Liver guidelines (ie, FIB-4 followed by SWE), along with sequential algorithms. Results The training, validation, and test data sets included 3067 (median age, 42 years [IQR, 33–53 years]; 2083 male), 1599 (median age, 41 years [IQR, 33–51 years]; 1124 male), and 1228 (median age, 44 years [IQR, 33–55 years]; 741 male) patients, respectively. FIB-Net obtained a noninferior specificity with a margin of 5% (P < .001) compared with SWE (80% vs 82%). The Two-step#1 algorithm showed higher specificity and positive predictive value (PPV) than FIB-4 (specificity, 79% vs 57%; PPV, 44% vs 32%) while reducing unnecessary referrals by 42%. The Three-step#1 algorithm had higher specificity and PPV compared with European Association for the Study of the Liver guidelines (specificity, 94% vs 88%; PPV, 73% vs 64%) while reducing unnecessary referrals by 35%. Conclusion A sequential algorithm combining FIB-4 and a US DL model showed higher diagnostic accuracy and improved referral management for all-cause advanced liver fibrosis compared with FIB-4 or the DL model alone. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ghosh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助YYN采纳,获得10
刚刚
kaola发布了新的文献求助10
1秒前
蜗牛发布了新的文献求助10
2秒前
Myo5meong完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
药化的彦祖完成签到,获得积分10
4秒前
喵呜发布了新的文献求助10
5秒前
无花果应助啵啵采纳,获得10
5秒前
6秒前
喜悦的听云完成签到,获得积分20
6秒前
万能图书馆应助nnnd77采纳,获得10
6秒前
jerry完成签到,获得积分10
6秒前
蜗牛完成签到,获得积分10
7秒前
7秒前
精明人雄完成签到 ,获得积分10
7秒前
8秒前
9秒前
玉崟发布了新的文献求助10
9秒前
10秒前
明亮萤发布了新的文献求助10
10秒前
完美世界应助王ccccc采纳,获得10
10秒前
zz发布了新的文献求助10
11秒前
11秒前
FashionBoy应助无共鸣采纳,获得10
12秒前
鸭蛋公主完成签到 ,获得积分10
12秒前
13秒前
可爱的函函应助YUMI采纳,获得10
13秒前
13秒前
黄同学完成签到,获得积分10
13秒前
xiaostou完成签到,获得积分10
13秒前
新的旅程完成签到,获得积分10
14秒前
小王同学发布了新的文献求助10
15秒前
WQ发布了新的文献求助10
16秒前
fei完成签到,获得积分10
16秒前
安冉然发布了新的文献求助10
16秒前
17秒前
WILAY889完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4298173
求助须知:如何正确求助?哪些是违规求助? 3823521
关于积分的说明 11970093
捐赠科研通 3465207
什么是DOI,文献DOI怎么找? 1900574
邀请新用户注册赠送积分活动 948453
科研通“疑难数据库(出版商)”最低求助积分说明 850857